
Continual Systems
Development for

Command, Control and Intelligence Systems

ABSTRACT

The traditional software development model is no longer

adequate to meet the challenges of the fast-evolving needs

of Command, Control and Intelligence (C2I) systems. To enable

the transformation of the Third Generation Singapore Armed

Forces (SAF), a continual systems development approach has

been adopted by DSTA to develop C2I capabilities for the SAF.

The key advantage of this approach lies in its flexibility to

respond rapidly to meet changing needs and address emerging

threats. The complexities of network-centric operations entail

the fielding of systems quickly for operational trials and to

continually discover capability gaps so as to evolve systems

capabilities over its life cycle. This paper addresses the

framework adopted by DSTA to develop the C2I system

of systems.

Dr Yeoh Lean Weng

Teo Tiat Leng

Lim Horng Leong

72

INTRODUCTION

The proliferation of network-centric operations
concept has introduced layers of complexity
in designing and developing Command, Control
and Intelligence (C2I) systems to support
military operations. After 9/11, the
characteristics of asymmetrical threats have
introduced new chal lenges in our
understanding of the capabilities needed. We
need to go through a process of learning and
exploration to discover the new systems
requirements and to translate these into the
architecture of C2I systems. Given the evolving
requirements and the emerging capability
demands from known and hidden threats,
there is a pressing need for technologists to
shorten development cycles and put the systems
into the hands of commanders and warfighters
as quickly as possible. The results gathered
through field trials and experiments enable
the stakeholders to understand the needs
better, explore new operational concepts and
identify capability gaps. DSTA’s Continual
Systems Development approach leads to shorter
and more frequent systems releases, resulting
in better capabilities for the Singapore Armed
Forces (SAF).

The traditional waterfall model is inadequate
as many unknown requirements cannot be
specified at the early developmental stages.
During the late 1990s, Boehm’s spiral model
(Boehm, 1988) inspired numerous C2I systems
developers to rethink and attempt to adopt it
as a risk management process to deal with the
continually changing requirements. High
technical risks were mitigated through
initiating multiple spirals to understand the
risks better and synthesise solutions to address
the risks. The various spiralling efforts must be
orchestrated to generate the synergy to deliver
systems capabilities to the commanders to
conduct Integrated Warfare.

DEVELOPMENT CYCLES
FOR C2I

System Life Cycle. In the 1980s when
mainframes and Unix workstations dominated
information technology, the life cycle of C2I
systems was between 10 to 20 years. For the
C2I systems that were installed onboard military
platforms, the life span could extend beyond
30 years. During those years, the C2I systems
were less complex and software upgrades were
infrequent. A typical C2I system would be
integrated into a suite of sensors and perform
tracking and data fusion to present the
situation to the commanders.

VADM Cebrowski conceptualised Network-
Centric Warfare in 1998 (Cebrowski, 1998) to
explore the effectiveness of networking
command and operating nodes to achieve the
benefits of speed of command and self-
synchronisation. In 2002, the SAF began its
journey to transform into the Third Generation
SAF that can respond to the challenges of the
21st century. In tandem with this, Integrated
Knowledge-based Command and Control
(IKC2) was conceptualised. Leveraging the
knowledge-centric paradigm, C2I systems
would be network-enabled and organised
around knowledge for effective command and
control (Lee et al., 2003). The shift from the
platform-centric to a knowledge-centric
paradigm generated chal lenges for
stakeholders to fully specify the complete
capabilities of IKC2. Since the advent of IKC2,
C2I systems have evolved through several
iterations over their life cycles, constantly
renewing themselves to maintain relevance
and meet the challenges of future threats. A
generation of renewal could happen between
five to eight years, during which many
enhancements would be incorporated to
deliver new capabilities. With the challenges
of impending asymmetrical threats, a shorter
development timeframe has become a necessity
for developers to build and deploy systems
expeditiously to explore and validate the SAF
operational concepts and identify capability
gaps. Through the knowledge gained from

Continual Systems
Development
 for Command, Control and Intelligence Systems

73

operational trials, developers can proceed to
integrate or construct new capabilities to plug
the gaps. The Continual Systems Development
approach has resulted in a blurring of
delineation between a prototype and an
operational system. This developmental
approach has become the choice for developing
and delivering C2I capabilities to the SAF.

Continual Systems Development. The
development model has to exhibit three
characteristics to qualify as Continual Systems
Development. Firstly, it has to possess the agility
to handle changing requirements to maintain
the relevance of the systems over time.
Secondly, the time taken from conceptualising
the system to developing the capabilities has
to be short to enable rapid fielding of the
system. This is not unlike commercial
competitive pressures of time-to-market.
Thirdly, it needs to be evolving to embrace
technological opportunities. When the
requirements are well understood, systems
functionalities and capabilities can be
incrementally integrated into the baseline C2I
systems through a properly staged schedule
for releases. Every incremental release adds to
the widening range of operational capabilities
of the system. Developers must have the agility
to field the system in a shorter cycle and to
respond effectively to evolving needs. As
requirements are packaged into different
releases, developers can work with stakeholders
to prioritise the schedule to introduce these
new functional capabilities.

When C2I systems exhibit medium to high risks,
a flexible model is needed to manage these
risks. Risk areas could be due to emergent and
evolving operational concepts, leading and
bleeding-edge technologies and the resultant
architectural risks. Boehm’s spiral model is a
risk-driven process that guides multi-
stakeholders to engineer software-intensive
systems (Boehm, 2001). The cyclic approach
leads developers to incrementally implement
the system while decreasing the risks. While
the well-known spiral figure showing the radial
and angular growth at each progression seems

to suggest that there is a single thread of
development, Boehm has highlighted that
parallel spiral cycles could be spun off for each
software component. The parallel spirals create
complexity and project managers need to
manage these parallel spirals in congruence.

To better manage the risks holistically,
engineering master plans are developed to lay
out the approach, risk mitigation strategy and
estimate the number and frequency of the
spirals. Usually, three to five spirals are needed
for the system to stabilise. In a single spiral,
there will be several mini spirals executed in
parallel or in series. Each mini spiral can last
between three to six months while some can
be as short as two weeks. Unlike the agile
development model that follows a strict
timebox control, the mini spirals create the
flexibility, time and space for the stakeholders
to manage the risks effectively and deliver
several releases for rapid operational trials.
Developers are not burdened with full-scale
documentation but would produce only
sufficient artefacts to capture the design
considerations, risks, and decisions made which
can be referenced to guide future spirals.

A single spiral is typically planned to be
completed within a year so that the C2I system
can be fielded for at least one major
operational exercise. Through the exercises,
capability gaps and system deficiencies would
be identified and addressed in future spirals.
While the spiral model may adequately manage
the risks of developing a single C2I system,
System-of-Systems (SoS) architecture risks
inherently straddle various systems at the
enterprise level and pose a different set of
challenges. While developing C2I SoS, multiple
spirals for each individual system will be
concurrently executed. The collective effort to
construct these component systems and
integrate them into the SoS to achieve the
intended result has to be carefully planned
and orchestrated. Otherwise, the SoS could
become dislocated and would fail to
demonstrate its intended Integrated Warfare
capabilities.

74

Managing Concurrent Spirals. Before
embarking on a massive development of the
C2I SoS, deliberate and comprehensive planning
is carried out. An enterprise architecture has
to be constructed so that it can provide the
strategic framework to deal with the
integration issues pertinent to the development
of the C2I SoS (Yeoh et al., 2007). To mitigate
the architectural risks, an experimental
approach is taken to construct a baseline C2I
Enterprise Architecture for experimentation.
An experimental System A is then developed
to verify the completeness and correctness of
the C2I Enterprise Architecture. The C2I
Enterprise Architecture continues to evolve
into version 1 for the basis of constructing the
remaining individual systems. Version 1 of the
architecture is verified through developing
System B for experimentation. Figure 1 shows
the concurrent spirals development for the
C2I SoS.

The concurrent spirals have to be managed in
a concerted effort to mitigate architectural,
technical, process and scheduling risks. Multiple
synchronisation points have to be established
during the planning phase so that the systems
can converge throughout the development
a n d i m p l e m e n t a t i o n p h a s e s . T h e
experimentation-to-operationalisation
approach separates the risks into manageable

pieces during the concurrent spirals. After
verifying the C2I Enterprise Architecture, the
individual systems are then staged for
deve lopment and managed under
configuration control. As shown in Figure 1,
each version is an incremental release of
capabilities into the C2I SoS. The incremental
release also reduces integration risks and
enables faster time-to-fielding for operational
trials. The C2I Enterprise Architecture itself
will also evolve with version changes.

Operations and Support (O&S). Prior to the
continual development, the development team
will hand over the system to a dedicated
support team to provide systems maintenance
during the O&S phase. The transitioning to
O&S entails training of the support team by
the development team. The support team
would need to re-learn the design from the
development team and would invariably be
less competent than the development team
in fixing the bugs. Therefore, such an
arrangement might affect the system and
operational readiness.

In the Continual Systems Development
framework, the same development team
continues to support the system throughout
the exercises and daily operations. The team
will fix software bugs and develop additional

Figure 1. Concurrent Spirals Development for C2I System-of-Systems

75

functions to support the operations. There is

no learning curve and we have benefited from

the leanness that can be achieved as the

knowledge and experience is retained within

the team. The veteran developers are around

to groom the juniors and pass on the

knowledge through on-the-job coaching and

supervision. The team continues to support

the system and then dovetail to the next spiral

development or major upgrade.

ENABLING CONTINUAL
DEVELOPMENT FOR C2I
SYSTEMS

To ensure proper governance, DSTA has

established the Enterprise Architecture

Framework to guide the innovation and

experimentation of new operational concepts

(Yeoh et al., 2007).

Enterprise Technical Architecture (ETA). The

early generations of C2I systems for the SAF

were developed with a low degree of

connectivity among the three Services, namely

the Army, Air Force and Navy. With the

advancement in information and networking

technologies, C2I systems were rapidly

networked across the three Services through

sharing and integrating common services.

Over time, an unwieldy mesh would be created

if there were no clear framework for proper
governance. As such, DSTA established the
Enterprise Architecture Framework to ensure
that the C2I systems are developed in
compliance with this framework so that the
systems are interoperable by design. The
framework offers better scalability through a
layered and integrated design to create a well-
integrated and interoperable development
environment.

The ETA is one of the components in the
Enterprise Architecture Framework (Yeoh et
al., 2007), and is adapted from the Service-
Wide Technical Architecture established by the
Infocomm Development Authority of
Singapore. It aims to establish the principles,
standards and development guidelines in the
design, development and acquisition of
Information Technology (IT) systems that range
from ubiquitous corporate IT systems to
specialised systems such as C2I systems. There
are eight principles to guide the developers to
construct the enterprise architecture. Table 1
shows the eight architecture development
principles.

The ETA is further organised into a nine-domain
architecture to provide the guidance and
standards for the developer to construct an
enterprise system. Figure 2 shows the nine-
domain architecture.

Figure 2. Nine domains of the Enterprise Technical Architecture

76

Table 1. Eight principles for developing architecture

 Architecture Development Principles

S/N Principle Definition

1. Information is a DSTA should be linked as a single virtual network
critical asset. It must in order to provide all personnel with on-demand access
be effectively to authoritative, relevant and sufficient information
collected, managed, to perform their duties effectively.
exploited, shared
and protected.

2. Adequate security Security must adequately protect information from
unauthorised access and protect systems from attacks,
both internal and external.

3. Reduced integration Interoperability and ease of integration (both intra and
complexity through inter agency) should be achieved through adherence to open
standards standards with wide industry acceptance and implementing

simplified and well-defined interfaces. In the case where no
open standards exist, the organisation should adopt a
product standard with wide industry acceptance. In addition,
standard user interfaces and access protocols should be used
for all systems, where standards are available.

4. Reuse through Systems should evolve to employ and share reusable
component-based components and infrastructure services across DSTA.
model

5. Highly granular Systems should be engineered to be 'highly granular' and
'loosely coupled'. This can be achieved through N-Tier
logical partitioning and implementing event-driven systems
and message-based interfaces.

6. Architecture and Architecture design and development should incorporate
infrastructure degrees of robustness, scalability, and adaptiveness to
robustness, support continuity, growth, and evolution of the business
scalability, respectively. Performance requirements of a system should
adaptiveness and be considered in totality which may lead to design trade-offs
performance of components within each domain.

7. Cost-effectiveness Minimising total cost of ownership should be a goal of
and operational architecture development. Both initial development costs
efficiency and ongoing operational costs like system administration

and maintenance must be considered in totality. Operational
efficiency of the architecture should be considered.

8. Minimise Create a small number of consistent configurations for
configuration deployment across the enterprise.

 support

77

The Application domain describes the
framework for the design of applications for
interoperability, maintenance of a high level
of distributed systems integration, reuse of
components and rapid deployment of
applications to enable a high responsiveness
to changing operational requirements.

The Collaboration and Workflow domain
defines the environment for the automation
of the distribution of ideas, notices and
documents throughout workgroups and the
entire organisation. The nature of the
collaboration and workflow among the users
and machines could be based on the processes
needed in the workgroup or the conversational
type of the interactions.

The Internet and Intranet domain defines
the technologies, standards and guidelines for
seamless and platform-independent
communications among the internal and
external nodes.

The Data Management domain defines the
mechanics for managing, securing and
maintaining the integrity of every data entity.
It also describes the structure of authoritative
databases and provides the standards to access
decision support data.

The Distributed Environment Management
domain defines the hardware and software
components of the environment that will be
controlled through configuration management.
The broad disciplines of the domain also include
fault detection and isolation, testing,
performance measurement, problem reporting
and software upgrades and control.

The Middleware domain defines an
integration environment between workstations
and servers in order to improve the overall
usability of the distributed infrastructure. It
creates a uniform mechanism for application
integration independent of network and
platform technologies.

The Platform domain defines the technical
computing components of the infrastructure
for the client and server hardware to interact
with the operating systems. It also describes
the storage, backup and high availability
components that constitute the hardware
infrastructure.

The Network domain defines the
communication infrastructure for the
distributed computing environment. It describes
the logical elements such as topology, physical
hardware components and protocols for the
networking infrastructure.

The Security domain defines the
technologies, standards and guidelines to
ensure the availability, integrity and
confidentiality of data. The elements include
identification, authentication, authorisation,
access control, administration and audit.

Common Repository. The common repository
is an asset that DSTA has created to support
the Continual Systems Development. The
repository preserves the intellectual capital of
C2I systems business application and technical
component services from which developers
could draw upon to rapidly assemble and
deploy C2I systems for the SAF. As the repository
applications and services are thoroughly tested
for operational deployment, the assembled
C2I systems would achieve a high degree of
assured quality for operational trials.

To continually evolve and expand the
repository, a rigorous process was adopted to
build common applications and services on top
of the existing services. When capability gaps
are identified, C2I systems developers will
develop the new applications and services on
top of the baseline C2I systems. The C2I systems
are then deployed for operational exercises to
verify the implementation and validate that
the gaps are satisfactorily covered. After the
successful completion of experiments, the new
applications and services will be enhanced to

78

incorporate the non-functional requirements
such as exception handling and reliability. The
validated services are then integrated into the
next baseline C2I systems and added into the
common repository for future development.
Figure 3 shows the process of continually
building up the common repository.

Using Modelling and Simulation (M&S). M&S
has been exploited to assist the stakeholders
to discover new requirements. As such, C2I
developers will team up with M&S analysts to
help users to define operational scenarios and
develop simulation models to allow users to
walk through their scenarios. Through the
process of modelling and simulation,
stakeholders can develop a better
understanding of the operational issues,
emerging threats and capability gaps. The
system effectiveness could be analysed to
establish the factors affecting the overall system
performance. Leveraging the newly acquired
knowledge, C2I developers can design different
architectures. Developers can further employ
M&S to evaluate the relative performance of
various architectures to select the optimal

architecture to meet the desired performance
of the C2I SoS.

Using an M&S approach to discover new
requirements and develop architectures in early
spirals is critical to the continuity of developing
C2I systems in future spirals. The right system
level and functional level service components
are identified for development in the early
spirals. These service components can be
assembled to form new capabilities and
validated using M&S. Another benefit of
employing M&S to study the needs is to level
up all stakeholders’ knowledge on the
operational and technical issues. This helps to
bring the operational and technical
communities to a common footing to build
better systems.

Emulator-based C2 Development (EC2D). The
EC2D is another approach to address the
difficulties of designing first-of-its-kind systems
(Yeoh et al., 2007). In the early spirals, emulators
can be constructed and assembled to provide
emulated inputs from other interacting system
components to the C2I systems. These system

Figure 3. Process for maintenance of the Common Repository

79

components can be the missile system or the
surveillance radar system. The C2I systems can
be easily assembled using the components
from the common repository and then
integrated with the emulators to form an
emulator-based C2I system environment to
facilitate the exploration of operational
concepts and evolving requirements. The EC2D
provides a low cost and low complexity option
in the early development phase when
interacting system components are being
specified. As and when the interacting system
components are available, they will then
replace the emulators in the follow-on spirals.

Resource Management System (RMS). Human
resources are paramount to the growth and
success of the organisation. This is especially
true for a technology organisation like DSTA.
To maintain leanness, utilisation of limited
resources has to be properly planned and
allocated to maximise the desired outcomes.
The RMS was created to facilitate the planning
and allocation of manpower. The developer
competencies are kept up to date in the RMS
and the system is able to recommend the right
match between the resource requirements of
the developers and the project. Matching the
developers to the appropriate tasks enables a
higher probability of success in meeting the
system’s requirements. In addition, individual
developer workload is also captured in the
system to avoid overloading the developer.
Maintaining a healthy balanced workload
allows the developers to spend time thinking
creatively and delivering innovative solutions
to the SAF.

Developing Competencies. While developers
are actively engaged in developing C2I systems,
the organisation needs to create space and
time for the developers to upgrade their skills
and develop new competencies. The effort
includes identifying emerging competencies
needed for future challenges and committing
resources, time and effort to develop the C2I
professionals. DSTA established the

Organisation Capability Development (OCD)
entity in 2006 to embark on this endeavour.
OCD works with the C2I developers to chart
the individual annual learning plan. The plan
highlights the training needs of each developer
and determines the training methods, schedule
and resources to build his/her capacity and
competency. The investment in the developers
and their training ensures the sustenance of
Continual Systems Development.

CONCLUSION

Continual Systems Development for C2I systems
is a risk management approach to developing
well-architected and integrated systems. This
approach has enabled the rapid development
and deployment of C2I systems for the SAF,
moving in tandem with its evolving and
expanding scope of desired capabilities to
tackle the challenges of the 21st century.

REFERENCES

80

Adams, G., Daniel, D. (2000). Managing
Concurrent Development – A Systems
Engineering Approach, Autotestcon
Proceedings, IEEE.

Aoyama, M. (1993). Concurrent-Development
Process Model, Software, IEEE, Vol. 10, Issue 4,
July, pp 46-55.

Boehm, B. (1998). A Spiral Model of Software
Development and Enhancement. Computer,
Vol. 21, No. 5, May, pp 61-72.

Boehm, B., and Hansen, W. (2001). The Spiral
Model as a Tool for Evolutionary Acquisition.
CrossTalk.

Cebrowski, Vadm A. and Garstka, J. (1998).
Network-Centric Warfare: Its Origin and Future.
Proceedings of the Naval Institute, January.

Infocomm Development Authority of Singapore
(2006). Service-Wide Technical Architecture.
R e t r i e v e d o n A u g u s t 2 0 0 7 f r o m
http://intranet.igov.gov.sg/Governanceand
Management/PoliciesAndStandards/SWTA/

Krygiel, A. J. (1999). Behind the Wizard’s
Curtain. CCRP Publication Series.

Lee, J., Ong, M., Singh, R., Tay, A., Yeoh, L.W.,
Garstka, J., Smith, E. (2003). Realising
Integrated Knowledge-based Command and
Control – Transforming the SAF. Pointer
Monograph No.2.

Yeoh, L.W., Chung, W.K., Cai, J. (2007).
Emulator-Based C2 Development: A Systems
Engineering Approach To Developing C2
Systems. Asia-Pacific Systems Engineering
Conference, Singapore.

Yeoh, L.W., Lew, C. S., Cheung, D.S.K., Lee,
C.C.W. (2007). Using Modelling and Simulation
System-In-The Loop Solution to Enhance
Productivity and Service Level for Military
Communication Systems Development. Asia-
Pacific Systems Engineering Conference,
Singapore.

Yeoh, L., Syn, H., Lam, C. (2007). An Enterprise
Architecture Framework For Developing
Command and Control Systems. 17th Annual
International Symposium of the International
Council on Systems Engineering.

This paper was first presented at INCOSE 2008,
15 - 19 June 2008 in the Netherlands and has
been adapted for publication in DSTA Horizons.

Dr Yeoh Lean Weng is Director (C4I Development and Systems Architecting).
He is also concurrently the Deputy Director of the Temasek Defence Systems
Institute and an Adjunct Professor at the National University of Singapore
(NUS). Lean Weng has extensive experience working on large-scale defence
engineering systems. As a systems architect, he played a key role in developing
the Enterprise Architecture for defence applications. He also developed the
systems architecting methodology for masterplanning and defence
transformation. He is also the Vice-President of the INCOSE Singapore Chapter,
INCOSE Region VI Representative to Member Board and the Chairman of
Systems Engineering Technical Committee, Institution of Engineers, Singapore.
Lean Weng received his Bachelor and Master of Science degrees from NUS
in 1983 and 1987 respectively. He further obtained two Masters in 1990 and
a PhD in Electrical Engineering from the Naval Postgraduate School (NPS),
USA in 1997.

BIOGRAPHY

Teo Tiat Leng is currently Deputy Director (Industry) in the Defence Industry
& Systems Office, Ministry of Defence. He has more than 15 years of experience
in software engineering and systems engineering, developing C4I systems
for the Singapore Armed Forces. His current work encompasses policy matters
pertaining to the defence technology ecosystem. He received his Master of
Science (Computer Science) with Distinction from NPS, USA and a Master in
Defence Technology & Systems, Master of Technology (Software Engineering)
and Bachelor of Science (Computer & Information Science) degree from NUS.

81

Lim Horng Leong is a Programme Manager (C4I Development). He led the
development of several large-scale command and control systems and
successfully fielded the systems for the Republic of Singapore Navy. He is
currently applying Systems Engineering methodologies for C4I
experimentation. Horng Leong received his Bachelor of Science degree
(Computer and Information Sciences) from NUS in 1996. He also holds a
Master of Science in Systems Engineering from NPS, USA.

