Introduction

De Novo Chemical Structure Elucidation has the following difficulties:

 Mass spectrum cannot easily be represented (due to noise)

e Low amount (~“60k samples) of training data (for a generative task)

e Generation of invalid molecules or with incorrect chemical formula

e Difficult to capture permutation invariant nature (GNN) while still allowing

generation of molecules with all sizes (sequential).

In this investigation, we attempt to resolve all of the aforementioned difficulties,

using a novel reinforcement learning approach.

Materials and Methods

To represent the mass spectrum, we perform graph convolution on fragmentation
trees!l, which has not been done before, to the authors’ knowledge.

For the generation, we will use a variation of Q-learning that only approximates
value functions of each state given a goal (fragmentation tree embeddings),
reducing this task to a regressive task, and allowing generation at all sizes.

We first pretrain a Fragmentation Tree GCN (FTree GCN) with a predictor to predict
the original mass spectrum, so that the graph-level embedding retains information.
Then, we used anomaly detection methods!?! to train the model on all states
(exponential with respect to number of heavy atoms) that lead to the target to be
considered 0, and others 1.
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Figure 1. a visualization of the training process of the model, aiming to learn to tell between correct and
incorrect states given only positive samples, using anomaly detection!?l methods. The fragmentation tree is
obtained using the SIRIUS 4 softwarel3l,
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The heuristic mentioned in figure 2 is for the A* search algorithm, defined by:
(1 _ Scoreanomaly) * (Ht/z) o Hleft

Where scoregnomary 18 the anomaly score by the model, H is the total number of hydrogens in the mitial state
subtracted by the target state, and Hie ¢ 1s the number of hydrogens in the current state minus the target state.

The number in the priority queue shown is the negative of the heuristic, as Python’s

priority queue implementation takes the smallest value.

0.40

ct outputs

raction of corre

F

o o <} o =) <}

= = N [N} W w

o w o [ 5] o
A A A ! A

Train loss (mse]
g H 2 £ g 2
g H 5 5 ] H
-
ré/ .
g
5
I3 =3
4
2
B 2
g g
o
3
8
3
S
fad ]
ot
3
N 8
2
g =
g g
g wwlle 2
s FE0I2 s
z LR
3 ey 2
g Ti9|s gy
o 222 |8
o — 1o
HlE
¥z
HIE
E
2 e
$¥a|e
%8
g5T
s £ii|e
k

0.00 A J

RULCTURE ELULIDATION FHOM TANDEM
SPECTHROMETHY ANUD CHEMICAL rOBMULA

A novel attempt at a Reinforcement Learning approach to De Novo Chemical
Structure Elucidation from Mass Spectrometry and Chemical Formula.

Results and Discussion
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Figure 3. Fragmentation Tree Graph Convolutional Network and predictor performance in
predicting original mass spectrum, as well as anomaly scores for test states with constraints
stated in graph (Green is normal, red is anomalous)
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Figure 4. A* search success rates in different scenarios, starting from initial state with only aromatic bonds,
taking up to 3 actions per state.
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Figure 5. A* search success rates in different scenarios, starting [depth] bonds away from the target state,
taking up to 3 actions per state. The green line is the performance when taking random actions.

We note, from figure 3, that the model did succeed in separating states.

From figure 5, we can see that, from depths of around 5, our models start to fail
to succeed. However, in figure 4, we see that starting from the maximum depth,
our model does achieve nonzero accuracy.
It appears that 2 overlapping factors cause the training to only be effective with
extreme values for depths:
The low amount of training data on states at low depths, causing training to
be ineffective with lower depths, only relevant at higher depths.

There being few restrictions on the actions that can be taken at low depths
as compared to high depths, improving performance only with lower depths.
Due to these, perhaps the performance will be lower with an intermediate
depth, while higher with depths closer to 1 or the maximum.

Future Work

Weigh training cases to cause effective learning of states at low depths.
Determine the reason why taking random actions achieves comparable results
to trained models (figures 4 and 5) despite the models succeeding in separation
(figure 3), as well as why random actions did better without restricting the
molecules to non-aromatic or benzene ring molecules only.
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