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Introduction

Magnetic fields play an indispensable role in quantum mechanics.! However, =
generating homogenous fields requires stable environments, and stray signals ="
can greatly skew results.2

o
Most geometries are constrained by its range of optical access due to bulky @
objects, hence spatially restricting potential measurements.3

Main objective: to develop a bespoke coil system to generate homogenous
maghnetic fields, mitigate background noise and improve the range of optical
access for experiments.

Preliminary Analysis

First, we analyse magnetic flux densities of existing coil systems using the Biot-Savart law,
alongside field homogeneity through computational simulations. We simulate each system
using the Magpylib library equipped with a filamentary wire of 1A, and find the proportion of
length that falls within 99% of the magnetic flux at the origin.

Helmholtz coils
e one pair of circular coils carrying equal

ampere-turns (nl)

coil radius (R) equal to coil separation
magnetic flux of 0.7155u,nl/R at the origin
radial homogeneity of 37.78%

axial homogeneity of 31.38%

@1

Braunbeck coils
two differently-sized pairs of circular coils
carrying equal ampere-turns (nl)
specific ratios defining radii and
separation4

~
magnetic flux of 1.28860ugnl/a, at the <

origin
radial homogeneity of 61.10%
axial homogeneity of 213.74%

Merritt coils

e two pairs of equal-length (L) square coils
carrying different ampere-turns
specific ratios define separation and
ampere-turns®
magnetic flux of 0.71428uenl/(L/2) at the
origin
radial homogeneity of 64.53%
axial homogeneity of 281.42%

Methodology

We investigate a combination between Braunbeck and Merritt systems (Merritt-Braunbeck system)
due to the Braunbeck’s high magnetic flux and the Merritt’s extensive homogenous and large range of
optical access. We use Scipy’'s optimisation library equipped with the Nelder-Mead algorithm® to
numerically determine the Merritt-Braunbeck system’s dimensions, choosing to maximise radial
homogeneity. The following ratios are obtained.
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Figure 1. 3D models of the (a) smaller frame and
(b) the larger frame.
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Figure 2. The physical coiled frames, complete with rods,
stoppers, and clips, connected to a D.C. supply.

Results & Discussion

By the Biot-Savart law, the Merritt-Braunbeck system gives an origin magnetic flux of 1.65597ponl/as,.

Computational and simulated results using the Magpylib library illustrating the field distribution (86.07%
for radial and 127.02% for axial) show that the Merritt-Braunbeck configuration possesses two-fold
rotational symmetry.
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Conclusion

We demonstrate that the Merritt-Braunbeck system offers a 231.4%, 128.5%, and 231.8% increase in magnetic flux density at the origin,
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