# EDMAL

# ENHANCED DETECTION OF AI GENERATED TEXT

## Introduction

The Problem

Recent developments in LLMs (Large Language Models, like ChatGPT) could:

- generate fake news
  - create tensions between values
  - be used for dishonest purposes



Various Al-generated text detection methods:

- GPTZero, DetectGPT etc.
- DNA-GPT (Divergent N-Gram Analysis for Training-Free Detection of GPT-Generated Text)



To find out if Machine Learning methods can enhance DNA-**GPT's** methods of text detection

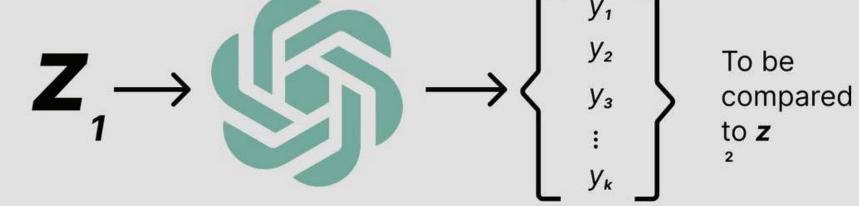
# Scope & Methodology

#### 4 Methods

Stemming from the DNA-GPT's original methods, we propose 4 methods to enhance their text-detection:

#### **Current DNA-GPT Detection using N-Gram Analysis**

- **Truncate** the text, z, using the truncate ratio of  $\gamma$ . ( $\gamma = 0.5$ )
- **Regenerate** from the truncated output,  $z_1$ , using an LLM, K times. (K = 10)



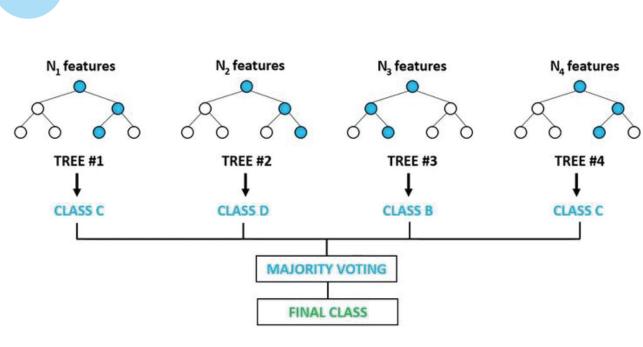
- **Compare**  $y_i$  to  $z_2$  to classify z as Al-generated or Human-written We propose and test 4 additional methods of doing so along with doing analysis of ngrams (like DNA-GPT
- Using computed scores in step 3, and based on a threshold, evaluate if text is Al-generated or human-written The threshold has to be fine-tuned to maximize scores for metrics

We grouped the 4 methods to improve step 3 into 2 groups:

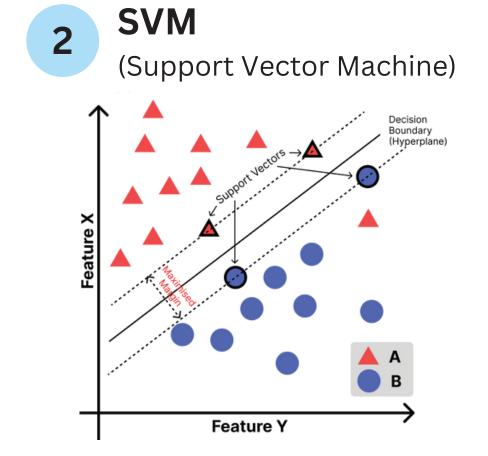
## **Extensions of N-gram Analysis**

We trained both by taking feature vector x as input and returning a label of 1 (AI-generated) or 0 (Human-written) as score\_z.

#### **Random Forest Classifier**



Extracted from an article on Medium titled: "Core Algorithms You Should Know in Classification" by Jwizzed



### 3.2

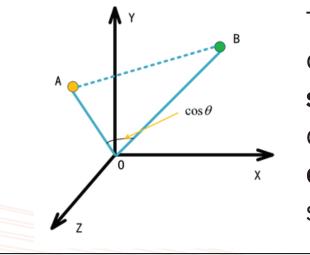
#### **Alternative Approaches**



By taking the number of transformations (with replace, insert and delete operations) to change  $y_i$  to  $z_2$ , we aim to analyze the lexical structure of the text.

This method was added since its similar to the original N-gram analysis method DNA-GPT used.

## **Word Embeddings With Cosine Similarity**



This method aims to capture the semantic meaning of text and determine texts' semantic distance.

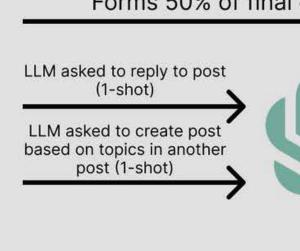
Extracted from a paper from Semantic Scholar titled: "Cosine similarity based fingerprinting algorithm in WLAN indoor positioning against device diversity" by Shuai Han, Cong Zhao, W. Meng, Cheng Li

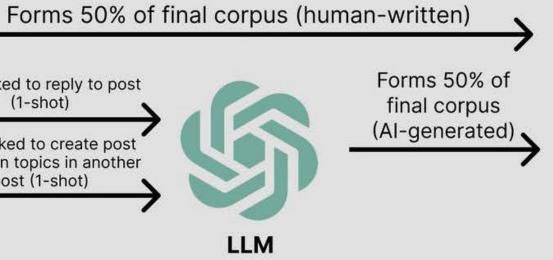
#### 3 Datasets

2 datasets with differing minimum word counts were pruned and generated as follows:

#### Small Reddit Dataset (Min 100 & 500)

Human Written Reddit **Posts** 





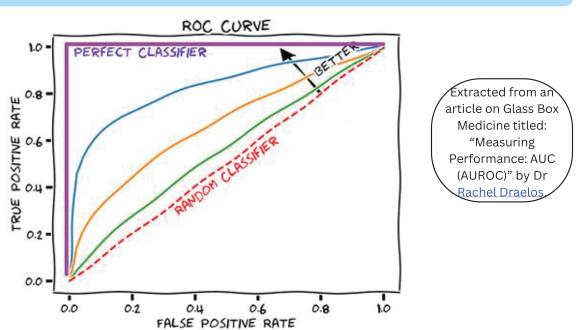


The final dataset, **ELI5 (Min 500)**, was constructed as follows:

- Human Section: Replies to questions from the Explain Like I'm 5 community
- Al Section: Generated replies to the same questions
- It was also used by DNA-GPT, allowing us to compare our results with DNA-GPT's.

#### 2 Metrics

#### **AUROC** (Area Under Receiver Operating Characteristic Curve)



#### TPR (True Positive Rate) at **1% FPR** (False Positive Rate)

This metric was used to ensure the reliability of detection algorithms for real-life deployment since it is crucial to maintain a high TPR while minimizing the FPR.

Both metrics were used by DNA-GPT, allowing for effective comparison of results.

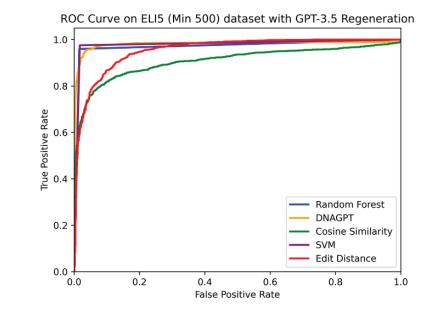
### 1 Model, Baseline and Detection Scenario

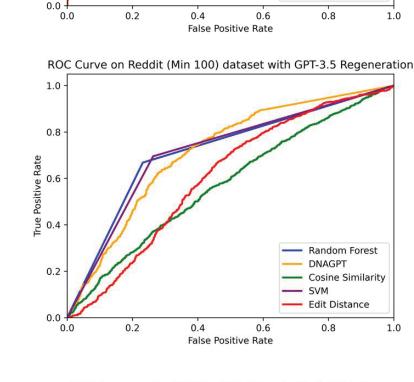
Due to time constraints, only one type of each were experimented with. Model: GPT-3.5-Turbo, Baseline: DNA-GPT's original method, Detection Scenario: Black-Box

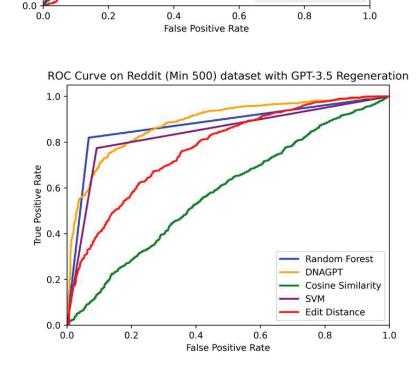
## Results & Discussion

Scores for AUROC and TPR metrics for all 3 datasets and 5 methods (including DNA-GPT's original score), with the best-scores (with a margin of 1%) bolded red

| Datasets           | ELI5 (Min 500) |       | Reddit Small (Min 500) |       | Reddit Small (Min 100) |      |
|--------------------|----------------|-------|------------------------|-------|------------------------|------|
| Method             | AUROC          | TPR   | AUROC                  | TPR   | AUROC                  | TPR  |
| DNA-GPT (original) | 96.85          | 63.50 | -                      | -     | -                      | -    |
| DNA-GPT            | 98.07          | 59.08 | 88.32                  | 8.06  | 71.50                  | 1.36 |
| Random Forest      | 97.20          | 61.04 | 87.60                  | 12.16 | 71.83                  | 2.89 |
| SVM                | 97.91          | 56.78 | 84.09                  | 8.04  | 71.62                  | 2.64 |
| Cosine Similarity  | 90.75          | 38.41 | 58.07                  | 1.11  | 57.58                  | 1.13 |
| Edit Distance      | 95.45          | 34.19 | 77.29                  | 3.96  | 60.58                  | 0.78 |







#### **DNA-GPT**

- · Able to closely match their results with our attempt at replicating DNA-GPT
- Original N-Gram Analysis methods proved to be extremely competitive

#### **Random Forest Classifier and SVM**

- Random forest classifier consistently performs the best among the 5 methods
- SVM has inferior performance, possibly because Random forest classifier relies on multiple models • However, both Random forest classifier and SVM
- require training, thus with a larger dataset size, improved results can definitely be achieved

#### **Cosine similarity with Word Embeddings**

- Performed **much worse** than other methods
- Semantic meaning of y\_i is very likely to match z\_2, with z\_1 as context, irrelevant of whether z is human-written or Al-generated
- Scores unable to properly differentiate AI-generated from human-written

#### **Edit Distance vs N-Gram Analysis**

- Lexical analysis of edit distance is much less effective than n-gram analysis
- Edit distance is unable to detect words with similar spelling could have completely different meanings (eg. "Stationary" vs "Stationery")

### Acknowledgements & References

[1] Yang, X. (2023, May 27). DNA-GPT: Divergent N-Gram Analysis for Training-Free Detection of GPT-Generated Text. [2] Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. ELI5: Long form question answering. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3558-3567 [3] Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn. Detectgpt: Zero-shot machine-generated text detection using probability curvature. arXiv preprint arXiv:2301.11305, 2023. [4] Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit lyyer. Paraphrasing evades detectors of ai-generated text, but retrieval is an effective defense. arXiv preprint arXiv:2303.13408, 2023

Member:

Ang Jun Ray, Raffles Institution

Mentor:

Dr Chieu Hai Leong, DSO National Laboratories





