MECHANICAL ANALOGUE OF QUBITS

1. Project Introduction

Objective: Construct a mechanical analog of a Qubit using a magnetised gyroscope and demonstrate the ability to manipulate its orientation through applied magnetic fields

What is a Qubit?

Qubits are basic units of quantum information found in the form of a two-state quantum-mechanical system

Bloch representation Qubit state

Density Matrix:

Density matrix then evolves to:

Bloch Equation:

is the Hamiltonian: the total energy of the system.

$$\frac{d\boldsymbol{\rho}}{dt} = \frac{1}{i\hbar}\boldsymbol{H} \times \boldsymbol{\rho}$$
$$= \boldsymbol{\Omega}_{\mathbf{e}} \times \boldsymbol{\rho}$$

 $H=\hbar\Omega_{\mathbf{e}}$ is the rotation rate

 $\widehat{H} = \boldsymbol{H}.\boldsymbol{\sigma}$

4. Results and Discussion

Trial 1: Permanent magnets

Trial 2: Coiled Solenoids

6. Future Work

- ☐ Use of Mu Metal Shields to shield the gyroscope from the magnetic field
- ☐ Replacing strings with a holder has less friction
- ☐ Explore the effects of reducing friction between the spin axes on the change in angular momentum

Acknowledgement and References

We would like to thank mentor Dr Wee Wei Hsiung for his invaluable advice for this project. Furthermore I would like to acknowledge lab staff Desmond from the DSO National Laboratories (DSO)

[1]Fano, U. (1957). "Description of States in Quantum Mechanics by Density Matrix and Operator Techniques". Reviews of Modern Physics

[2] The Pauli spin matrices - The Feynman Lectures on Physics

[3]Poincare Sphere with Polarizations.svg - Wikimedia Commons. (2010, October 1)

[4]Torrey, H C (1956). "Bloch Equations with Diffusion Terms". Physical Review. 104 (3): 563–565.

2. Equivalence of Qubits and Magnetic Gyroscope

2-State energy levels of a Qubit

Ω: Rabi frequency Δ: Detuning from the resonance frequency ω_0

Application of EMF can manipulate states, allowing the quantum states to superpose

Bloch Equation of Qubit

The Hamiltonian vector *H* rotates the Bloch vector $\boldsymbol{\rho}$, about at a rate $|\Omega_{
m e}|$ about the Bloch sphere

Magnetic Gyroscope precessing about magnetic field

B is the Magnetic field applied **L** is the Angular momentum of Gyroscope **M** is the magnetic dipole moment

3. Methodology

Coiled Copper solenoids to generate a uniform magnetic field

using Fusion 360

 $Mass_{CW} = 1.40 g.$

Solid brass lightweight frame (148.4g)

with a aluminium

Center of gravity of the gyroscope holder found

Fusion 360 used to design before being 3D printed out of **PLA+ filament.**

5. Conclusion

- ☐ The greater the magnetic field strength the larger the rate of gyroscopic precession
- ☐ Qubits can be mapped using a magnetised gyroscope
- ☐ A magnetised gyroscope can be used to understand fundamental concepts of quantum mechanics at an introductory level

Members:

Xie Yundi, Raffles Institution

Fabius Tan, River Valley High School

Mentor:

Dr Wee Wei Hsiung, DSO National Laboratories

