SPACE-TIME METASURFACE OPTIMISATION AND APPLICATION

INTRODUCTION

Space-time metasurfaces (STM)

- Artificial surface of sub-wavelength scale periodic elements
- EM wave manipulation to control scattering of incoming electromagnetic wave harmonics; wavefront control (steering, focusing) allows for increased gain & decreased parasitic radiation
- Important in many areas of research photonics, communications, remote sensing, etc.

Primary challenge: generate space-time matrix (STMx) that fulfils specific requirements for various applications

THEORETICAL BACKGROUND

Eliminated time-dependence of time-periodic space-time matrix Γ by Fourier transform

$$\Gamma = \sum_{b=1}^{L} \frac{\Gamma_{pq}^{n}}{\pi m} \sin\left[\frac{\pi m}{L}\right] e^{-\frac{i\pi m(2b-1)}{L}}$$

m: harmonic number, (N,M): (x,y) space lengths of STMx, L=time length of STMx, k_1 : incident wave wavenumber, k_1 : outgoing wavenumber, Γ_{pq}^n : reflection coefficient of (p,q) element during interval $(n-1)\tau \leq t \leq n\tau$

Far-field pattern derived from phasor sum of E-field contributions from each element [1]:

$$E(\theta,\phi) = \sum_{q=0}^{L} \sum_{p=0}^{L} E_{p,q}(\theta,\phi) \exp\{jk_2(pd_x \sin\theta\cos\phi + qd_y \sin\theta\sin\phi)\}$$

$$\sum_{q=0}^{L} \frac{\Gamma_{pq}^n}{\sin[\frac{\pi m}{L}]e^{-\frac{j\pi m(2b-1)}{L}}}$$

To account for near-field & oblique incidence cases, we simply add a phase shift to the summation:

Near-field:

$$\exp\left\{jk_1\left|\vec{r}-\begin{pmatrix}pd_x\\qd_y\\0\end{pmatrix}\right|\right\}$$

Oblique incidence: ex

 $\exp\{jk_1(pd_x\sin\theta_i\cos\phi_i+qd_y\sin\theta_i\sin\phi_i)\}$

OPTIMISATION

To improve applicability of STM:

- Deflect main beam of a specific harmonic to desired angle
- Suppress all other harmonics and sidelobes

However, this problem is difficult to solve analytically (due to large x^n space of solution)

Apply Genetic Algorithm ($\mu + \lambda - GA$) (population of μ and recombination pool of λ) [2] Fitness function defined as $4\sum_i (x_{p_i} - x_{p_i,0}) - \max(p_1, \dots, p_i, i \neq i_{shift})$

Weighting constant to emphasize beam steering over sidelobe suppression

Penalizes increasing main beam distance (x_{p_i}) from steering angle $(x_{p_i,0})$

Penalizes large sidelobes or harmonic peaks (p_i)

Hyperparameters:

- Hyperparameters:Replacement rate = 0.25
- Mutation rate = 0.05
- Crossover probability = 0.9
- Initial population size = 100

Able to reach convergence in about 200 generations, each run takes less than 30 minutes to reach optimum.

ACKNOWLEDGEMENT

I would like to thank Dr Chia Tse Tong for his invaluable support and guidance throughout this project. I would also like to thank Dr Chio Tan Huat (DSO) and Mr Cheng Jang Ming (Temasek Laboratories @ NUS) for supplying hardware and setting up the experimental apparatus. Finally, I would like to thank DSO National Laboratories for giving me the opportunity to take up this project.

RESULTS & DISCUSSION

(i) Deflect harmonics in arbitrary directions,

(ii) Minimize sidelobes & other harmonics to a reasonable extent (>10dB below) for normal incidence, oblique incidence, and near-field

(Top-L) Normal plane wave incidence, steer beam of fundamental frequency to 10° (Bottom-L) Normal plane wave incidence, steer beam of 2nd harmonic to 30°

(Top-R) Near-field incidence, steer beam of 3rd harmonic to 30°

harmonic to 30°
(Bottom-R) Oblique plane
wave incidence at 30°, steer
beam of 1st harmonic to 15°

Observed non-reciprocity for oblique incidence case

incidence scenarios

Method can be generalised to related fields

(L) Demo of optimization
 (sidelobe suppression)
 for Time-Modulated
 Linear Array (TMLA)
(R) Demo of optimization
 (beam steering &
 sidelobe suppression) for
 8x8 element reflectarray
 antenna

EXPERIMENTAL VERIFICATION

Simulated space-time metasurface via a time-modulated array:

(R) Complete view of setup
(L) STM side with array & its RF

backend, power supply & controller
(M) Receive horn connected to spectrum analyser.

No significant difference between optimization quality for different

(1) **Very good agreement** found between predicted & observed harmonic power distribution (most deviations within experimental error):

(2) Beam steering in the **predicted direction** observed

CONCLUSION AND FUTURE WORK

- Demonstrated capabilities of STM for beam steering and suppression of sidelobes & harmonics in both near-field & far-field incidence cases using genetic optimisation
- Verified theoretical results with experimental data, obtained good fit with theory
- Proved applicability of our method in generating optimised STMx

References

- 1. Zhang, L., Chen, X.Q., Liu, S. *et al.* Space-time-coding digital metasurfaces. Nat Commun 9, 4334 (2018). https://doi.org/10.1038/s41467-018-06802-0
- 2. Slowik, A., Kwasnicka, H. Evolutionary algorithms and their applications to engineering problems. Neural Comput & Applic 32, 12363–12379 (2020). https://doi.org/10.1007/s00521-020-04832-8

Member:

Ng Le Xi, NUS High School of Mathematics and Science

Mentor:

Dr Chia Tse Tong, DSO National Laboratories

