SPATIAL INFORMATION INFERENCE IMPROVES ACTIVATION ENERGY PREDICTIONS

Introduction

- Activation energy is an important property in chemistry
- Expensive to conduct experiment
- Previous models predict using only chemical equation
- Want to improve accuracy by implicitly using spatial information[1]
- Work done on molecule properties, not reactions[2]

Methodology

Multi-step training process

Generate spatial information, processing the 2D reaction into 3D, using *ETKDG* (RDKit) to generate conformers[3]

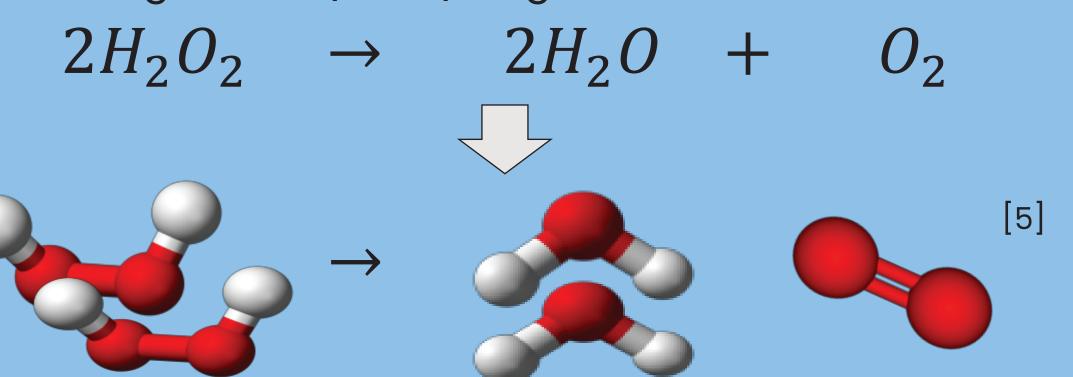
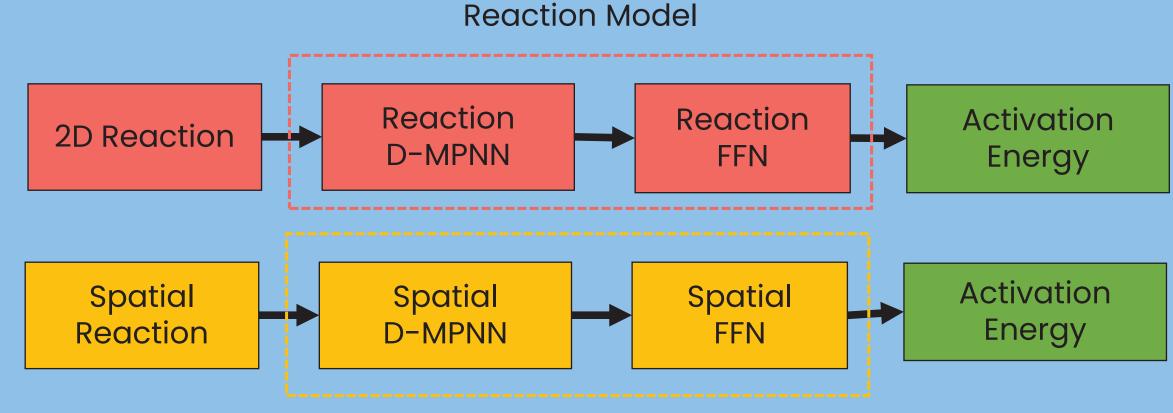



Figure 1: Example spatial information generated

The data was fed into two models as such:

Spatial Model

Figure 2: Operation of the two models.

Extract the *D-MPNN* from the two models,
Train to be similar with contrastive learning
Set pairs from same reactions to zero loss (NTXloss)
Set pairs from different reactions to high loss

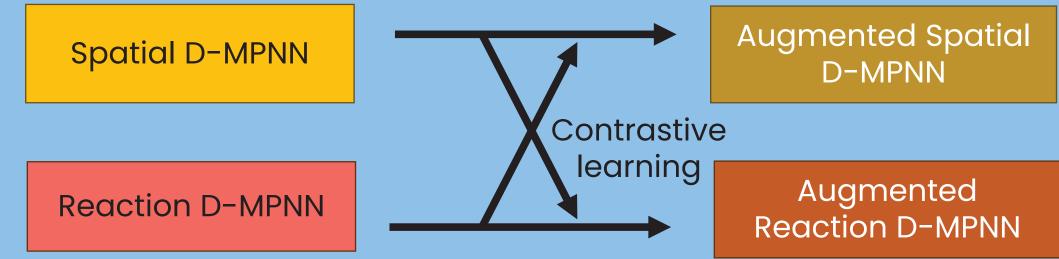
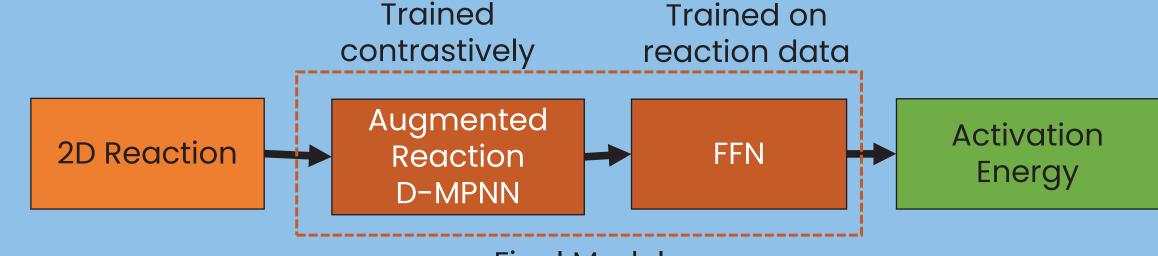



Figure 3: Creation of the augmented encoders.

Creates augmented (contrastively-trained) *D-MPNNs* which can implicitly encodes spatial information

Use augmented reaction *D-MPNN*

Final Model
Figure 4: Operation of the final model.

Results and Discussion

Our model uses the $\omega B97X-D3$ dataset[4].

	Final Model	Reaction Model
MAE	6.02	6.12
RMSE	9.46	9.56

Figure 5: Comparison between final and reaction model

Paired-t test on the hypothesis that the final model gives less absolute error yielded p=0.002

More accurate Activation Energy Predictions via implicit accounting of spatial information

Generating spatial information on test set took 3 minutes Generating predictions took 3 seconds 60-fold improvement

Spatial Information Inference gives quick Activation Energy Predictions

Future Work

- Include higher quality spatial information
- Include bond angle as a parameter
- Experiment on datasets of larger molecules

Applications

- Picking candidate pathways for organic synthesis
- E.g. Drug manufacturing or novel materials
- If reaction has too high activation energy, should consider alternative reaction

Conclusion

- Created a model that can predict activation energy
- Improves accuracy with spatial information inference (p=0.002)
- Maintaining same high prediction speed

References

[1] Heid, Esther, and William H. Green. "Machine learning of reaction properties via learned representations of the condensed graph of reaction." Journal of Chemical Information and Modeling 62.9 (2021): 2101-2110

[2]Stärk, Hannes, et al. "3d infomax improves gnns for molecular property prediction."

International Conference on Machine Learning. PMLR, 2022. [3] Conformer Generation Using RDKit, 2012.

www.rdkit.org/UGM/2012/Ebejer_20110926_RDKit_1stUGM.pdf. (accessed 12/2023) [4] Grambow, Colin A., Lagnajit Pattanaik, and William H. Green. "Reactants, products, and transition states of elementary chemical reactions based on quantum chemistry." Scientific data

7.1 (2020): 137.
[5]Ball and stick model of molecules in decomposition of hydrogen peroxide: https://en.wikipedia.org/wiki/Hydrogen_peroxide#/media/File:Hydrogen-peroxide-3D-balls.png

https://en.wikipedia.org/wiki/File:Water-3D-balls-A.png
https://commons.wikimedia.org/wiki/File:Ossigeno_molecolare.jpg (all accessed 02/2024)

Members:

Chua Wee Chong, NUS High School of Mathematics and Science Liu Wenkai, NUS High School of Mathematics and Science

Mentors:

Alvin Liew, DSO National Laboratories

Dr Chieu Hai Leong, DSO National Laboratories

