THE AUGMENTED BINARY TREE RECONSTRUCTION PROBLEM: NEW ALGORITHMS AND DIRECTIONS

<u>Problem Statement: Algorithms for Augmented Binary Tree Reconstruction by an Adversary</u>

Setup: Binary tree with 'augmented nodes, 2^d leaves with random unknown identifiers.

Queries: Adversary observes (x, P_x) , x is a node in the tree, P_x is the set of identifiers of leaf descendents of x. (e.g. $(4, \{S, Q\})$). Inferences: Notice that observing multiple queries will reveal additional information to Adversary. (e.g. given $(4, \{S, Q\})$, $(4.5, \{Y, Q\})$, can tell P_y = $\{Q\}$ = $\{P_y$ an $\{P_y\}$ without querying).

Our goal: Design a Reconstruction Algorithm that is optimal and

Output: As many leaf node identifiers

efficient.
Input: Series of queries

as possible.

Child node (descendent) of 1 2 2.5 3 Parent node (ancestor) of 14 and 15 S Q Y H J M A Q

Algorithm 1: Recursive Neighbour Search (RNS)

- Uses relationships between neighbouring nodes to compute others
- Repeatedly scans tree and implements these equations, until no more changes
- Given node
- Computed node

Algorithm 2: One-pass Union-Intersection Search

E.g.

$$P_{10} = P_2 \bigcap P_{2.5} \setminus P_{5.5} \bigcup P_6$$

General formula:

$$P_x = \bigcap_{n \in I} P_n \setminus \bigcup_{n \in U} P_n$$

Results

RNS

One-pass

We did experiments by implementing them in Python and observed two metrics: percentage reconstructed (accuracy) and time taken.

One-pass has near constant time taken, though slower at lower query number.

RNS faster at low query number but time taken increases more significantly.

Accuracy of One-pass higher than RNS on each number of queries on average.

Conclusion: One-pass is an optimal and more efficient algorithm as it is faster at higher query number and more accurate.

Cryptography Application

- Augmented binary trees used in Range Searchable Encryption
- Adversary can use our algorithms to reconstruct sensitive information in a server.
- Can observe queries and use nodes received to reconstruct data from the tree
- A form of Leakage Abuse Attack.

Impact of work

- Can be used to gauge security of RSE schemes that use augmented binary trees.
- Future work could find ways to mitigate possible weaknesses

Members:

Julian Tay Yu Sheng, Dunman High School

Tey Yik Jin Ryden, Anglo-Chinese School (Independent)

Mentor:

Dr Ruth Ng Ii-Yung, DSO National Laboratories

