J? ROOT CAUSE AND PATCH ANALYSES OrF ELEVATION
/ULNERABILITIES IN THE WINDOWS OPERATING 5YSTEM

LT b
W\ iz

(2 Background
The Windows operating system is the most widely used in
the world. However, its popularity and widespread use
makes it a prime target for malicious threat actors seeking
to exploit vulnerabilities. Studies have found that the
Windows operating system is highly vulnerable to
CWE-269: improper privilege management.

@Aims of Project

1. To replicate each vulnerability on a virtual machine.
2. To understand the root cause of each vulnerability.
3. To identify the patch released by various vendors.
4. To determine whether each patch is sufficient in
preventing future replications of the vulnerability.

ﬂy_pothesis
Current security patches of elevation of privilege
vulnerabilities are typically designed to address a specific
method of replication and exploitation. An attacker can use a
slightly altered method of replication and exploitation based
on a similar concept, which can bypass the patch.

.CVE-2020-1170 (Windows Defender MpCmdRun.exe) CVE-2021—21551 (Dell dbutil_2_3.sys Driver) ==CVE-2023-21768 (Windows afd.sys Driver)

CVSS Score: 7.8 CVSS Score: 8.8 CVSS Score: 7.8

Root cause: MpCmdRun.exe did not check if
MpCmdRun.log.bak had a reparse point.

Root cause: Write-what-where condition - unprivileged
users can use the driver to write to kernel memory.

Root cause: Write-what-where condition - unprivileged

users can use the driver to write to kernel memory.

Arbitrary Write Primitive

between the vulnerable and patched version
Vulnerable Patched

Perform static analysis in IDA: Find the file name for
CreateFileA() to obtain a handle to the driver

> (Perform static analysis in Ghidra: Find the difference

H]Eﬂ]ﬂ]OVEL ' if (checkforuser == '\0") { if (checkforuser == '\0") {
** (uint **) (address + 0x18) = writtenvalue; ** (uint **) (address + 0xl18) = writtenvalue;
} }
* else { else {
/* probeforwrite */ ProbeForWrite(* (undefined8 *) (address + 0x18),4

[10:15... @ MpCmdRun.exe 4032 % FileSystemControl C:\Windows '\ Temp\MpCmdRun log bak_SUCCESS Control: FSCTL_GET_REPARSE_POINT]|
[U 12 MpCmdRun.exe MpCmdRun.exe + (x33% A 7727033 C:\Program Files\Windows Defender\MpCmdRun exe|

v

memmove(), and size of buffer. Use these as parameters *

for DeviceloControl() to interact with the driver
Find prerequisites for buffer such as buffer size and
configured loCompletion Object in Ghidra

** (uint] **) (address + 0x18) = writtenvalue; ** (uint **) (address + 0x18) = writtenvalue;
Cind the IOCTL code to access the function containing } }

Lol i =

if ((buffersize != 0x30) || (param 7 != 0)) {| |vl@ = ObReferenceObjectByHandle(v1l, 2i64, IoCompletionObjectType, a4, &v26, 9i64);]

1. Write C code to hit the breakpoint (] . :)
2. Attach the VM to WinDbg and create a breakpoint Find I0CTL code for AfdNotifySock() in IDA
3. Run the code in the VM .rdata: 00000001 CAB4FSFS dg offset AfdNotifySock

9: kd> bp dbutil 2 345294
0: kd> bl

v

0 e 11802 5e0a5294 0001 (0001) dbutil 2 3+0x5294

I Write a POC code, attach the VM to WinDbg and run the
POC code
By stepping through functions, value of memmove() h: kd> bp afd!AfdNotifySock
: - 5 D: kd> bl
destination becomes 0. Edit code to use 0 e Disable Clear fffff800° 72c6£c30 0001 (0001) afd!AfdNotifySock
KUSER_SHARED_DATA + 0x800 as destination since itis/}|
543328....¥Mp0deun.exe 2492EqF?IeSystemConl_..Cf\Vﬁndows\Temp\MpCdeun.Iog.bak SUCCESS Controlf FSCTL_GET_REPARSE_POINT a fixed kernel address tha’t iS Writeable 3;33 kpoint . 0 hit)
4328 3¢ MpCmdRunexe 2492 g FileSystemCont. . C:\Windows\Temp\MpCmdRun.logbak SUCCESS Control. FSCTL DELETE REPARSE POINT 2 !AdeOtlfYSOCk.
[U 12 MpCmdRunexe MpCmdRun.exe + 0x102e2 0x7ff7c93d02e2 C:\Program Files\Windows Defender\MpCmdRun.exe] o r — FEEEL800 " 72c6£fc30 488bc4 mov rax, rsp
|U 12 MpCmdRunexe MpCmdRun.exe + 0x10368 0x7ff7¢93d0368 C:\Program Files\Windows Defender\MpCdeun,exel 1: kL > I PCX
I IrCX=0000000000000000 I
l The POC code attempts to write to the address supplied
By displaying the bytes of destination and source, our and results in a blue screen
buffer has been written to the kernel R -
: ?g?f?gg‘:7§;£z;;?;\72é:’;5‘f;§ietl’n"»'x;it eax,dword ptr [rsp+44h)
2 : kd) d q S Pd X L 1 ;'fdl!ci;dgot1fyF.c—.mc-veIc:-?c»mplc—t1:::n*(1x255:
fffff800 " 72c6fb81 89501 mov dword ptr [rcx],eax

3: kd> p
KDTARGET: Refreshing KD connection

ffffe08f 0a5ee298 43434343 43434343
2: kd> dgs OxFFFFF78000000800 L1

11780 00000800 43434343 43434343
Arbitrary Read Primitive A fatal system error has occurred.
Debugger entered on first try; Bugcheck callbacks have not been invoked.

Find another IOCTL COde to acceSS the function A fatal system error has occurred.
containing memmove(). Use this as a parameter for
DeviceloControl() to interact with the driver

v

+ Fatal System Error: 0x00000050

Driver at fault:
afd.sys - Address FFFFF80072C6éFB81 base at FFFFF80072C00000, DateStamp 0c5cé994

Cmp , KUSER_SHARED_ DATA is read-only in Windows 11.
When the kernel attempts to write to the address supplied,
it results in a blue screen of death

Control: FSCTL_GET_REPARSE_POINT]

E3157__9F MpCmdRunexe 4104 & FileSystemCont__C\Windows\Temp\MpCmdRun log bakiju_SUCCESS I d h h b kp I 3: kd> lpte £E£££78000000000
1. Write C code to hit the breakpoint pre : T
= = PXE at FFFFB341A0DOEF7S8 PPE at FFFFB341A0DEF000 PDE at FFFF8341BDECOOOO PTE at FFFF837BC0000000
2. Atta.Ch the VM to W|nDbg and create a breakp()lnt contains 000000011FE02063 contains 000000011FE03063 contains 000000011FEO4063 contains SA0000011FF35021
. pfn 11fel2 -==DA--EKWEV pfn 11fel3 -==DA--KWNEV pfn 11fe(4 -==DA--KWEV pfn 11££35 ====A==KR=V|
3. Run the code in the VM

©: kd> bp dbutil 2 3+11e5
0: kd> bl

v

Before crashing, KUSER_SHARED DATA's address was
In RCX register and “1” was written to RAX register

0 e fffff8ee 1bf811e5 0001 (0001) dbutil 2 3+0x11l1e5

‘

By Stepplng through functlons Value Stored at rdx=0000000000000000 rsi=0000000000000000 rdi=0000000000000000
¢ =fff££80072céfb8]l rsp=ffff8006albe2l70 rbp=ffffe8006albelcal
KUSER_SHARED_DATA can be read by user =~

r@=ffffac052814fed0 r9=ffffac052985ce98 rl0=ffffac0522aa5dso0
. —— ril=ffffac0528224930 r12=0000000000000000 r13=0000000000000000
1: kd> r rex R SN | | - | 4= 000000000000000 r15=0000000000000000
rcx=Ff 178000000000 [+] QWORD @
1: kd> dgs rcx

fffff780 ooooooe0 0fab0000 0000000, :

rax=0000000000000001 rbx=0000000000000000 rcx=fffff£78000000800

Local Disk (C:) » ZZ SANDBOX

~

e Date modified Type Size

This folder is empty.

Patch analysis: As a similar method was used to replicate
the vulnerabllity on the patched VM, the patch was
insufficient.

Patch analysis: The access control list was elevated.
However, as system administrators can still replicate the
vulnerability, the patch was insufficient.

Patch analysis: ProbeForWrite() function call was sufficient
as it ensures that the user mode buffer resides in user mode
portion of address space and not kernel mode.

detect and respond to any exploitation following the implementation of patches. Additionally, this knowledge can be used to create robust patches that offer broader protection aga

Software developers can leverage this information to enhance their patch monitoring practices. They could consider incorporating a dedicated monitoring period to promptly
inst
a range of potential vulnerabilities. The improvements in software security and privilege management practices can lead to safer systems for end users.

—
||
—

St meEerfFaVYal R aVasm e B E
— §§§
“

—
|| | B

DSTA

Defence Science &
Technology Agency

