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ABSTRACT 
 

Long-Term Evolution (LTE) cellular networks are the central component to the success of one 

of the most essential and in-demand fields globally, telecommunications. However, these LTE 

networks simultaneously drain expensive and scarce radio resources, primarily electrical power 

and frequency spectrum. This project thus seeks to use existing fourth generation (4G) LTE 

telemetry data to develop two supervised classification Machine Learning (ML) models capable 

of being utilized in a dynamic Radio Resource Management (RRM) system for LTE networks. 

The ML models will be predicting if a cell exhibits (a) normal behaviour where no redistribution 

of radio resources is required or (b) anomalous behaviour that requires reconfiguration. 

Incorporating the use of Exploratory Data Analysis (EDA), feature engineering, and hyper-

parameter tuning, a Decision Tree (DT) model and an eXtreme Gradient Boosting (XGBoost) 

model was successfully trained. Model evaluation and explanation was conducted and further 

explored in a Graphical User Interface (GUI), where it was demonstrated that the DT and 

XGBoost models had F1-scores of 0.966 and 0.980 respectively, on top of an Area Under the 

Precision-Recall Curve (AUC) of 0.974 and 0.999 respectively, this indicates exceptional 

model performance and promising implementation potential predominantly in the latter model. 
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1. INTRODUCTION  

  

Telecommunications is now the most competitive and sought market globally, with existing 

literature estimating that Mobile Network Operators (MNOs) require the essential capacity to 

provide for over 100 billion connections in the global mobile communications network in the 

next 10 years [1]. The foundations for this exponentially growing market are Long-Term 

Evolution (LTE) cellular networks, capable of transmitting data with lower latency and at 

higher data rates than their third generation (3G) counterparts [2]. 

 

However, these LTE networks rely on the usage of expensive radio resources, particularly 

electrical power and frequency spectrum. The increased use of wireless devices and mobile 

appliances has resulted in the congestion of the frequency spectrum and a sharp rise in its price 

as a result [3]. Traditionally, MNOs resolved this issue of Radio Resource Management (RRM) 

by deploying more macro cells and overprovisioning cells to ensure smooth operation even 

during peak hours with high traffic load, a method which is no longer sustainable due to its 

large energy demands [4]. As such, newer generations of LTE networks including the currently 

employed fourth generation (4G) and fifth generation (5G) systems look upon Machine 

Learning (ML) applications as a means of dynamic RRM. 

 

The project thus aims to statistically analyse past 4G LTE network telemetry data which will 

subsequently be used to train supervised classification ML models capable of classifying cell 

behaviour as (a) normal: where current activity corresponds to normal behaviour of any day 

and no reconfiguration is required or (b) anomalous: where current activity differs from the 

behaviour usually observed for that time of day due to external interruptions such as sports 

events or strikes which thus triggers a reconfiguration of the base station. A Graphical User 

Interface (GUI) will also be developed to allow MNOs to create predictions using the ML 

models and to facilitate the evaluation of the ML models using their testing telemetry data. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Dataset 

Telemetry data was obtained from a 4G LTE deployment spanning two weeks, where the 

dependent or outcome feature “Behaviour” along with 13 other predictor features listed in 

Table 1 were gathered from a set of 10 base stations, in total spanning 33 cells, every 15 

minutes. Total sample size of the dataset is 36904. The telemetry dataset can be accessed 

under the “Annex A: Data Availability” section. 

 

Table 1. Table of Feature Names and Details 

Feature Type Feature Name Unit 

Binary Behaviour (Normal or Anomalous) NA 

Interval Time (of day) Hrs:Min 

Metric Percentage of Physical Radio Blocks (PRB) usage (uplink) % 

 Percentage of PRB usage (downlink) 

Mean carried traffic (uplink) Mbps 

 Mean carried traffic (downlink) 

Maximum carried traffic (uplink) 

Maximum carried traffic (downlink) 
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Mean User Equipment (UE) devices (uplink) NA 

Mean UE devices (downlink) 

Maximum UE devices (uplink) 

Maximum UE devices (downlink) 

Maximum UE devices (uplink and downlink) 

Nominal Cell ID 

 

2.2 Exploratory Data Analysis 

Before approaching the ML model creation, Exploratory Data Analysis (EDA) allows for 

insights into the traits of the data and the fundamental relationships between features [5]. In this 

context, it incorporates assessing data quality, identifying distinct outliers, observing data 

distributions, correlations and relationships between features. Data quality was first assessed 

by checking for missing values within the rows of the dataset, of which there were none. 

However, the dataset was observed to be imbalanced with the large majority of cell behaviour 

being normal (72.4%) rather than anomalous (27.6%). 

 

 
Figure 1. Normal and Anomalous box plots of mean UE devices (Uplink) 

 

Data visualisation was subsequently done by plotting boxplots for normal and anomalous 

behaviour for all 12 predictor features (except “Time”, the feature “Time” cannot be analysed 

until it is converted into alternate forms and is thus negated for this section). Any values 

determined to be outliers by Tukey’s method [6] was plotted as a diamond dot. Utilizing this 

method, the only distinct global outlier was identified in the mean active UE devices (uplink) 

feature, shown in Figure 1, with a value of 2.668 and was subsequently removed for all 

following analysis and model training.  

 

Afterwards, feature importance was examined to determine which features would benefit the 

performance of the models and should be utilised. This was done through hypothesis tests that 

would determine whether a feature has a statistically significant effect on the outcome feature 

“Behaviour”. To ascertain the type of statistical analysis to perform, a Shapiro-Wilk (SW) test 
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for normality [7] was conducted and it revealed that all features were not normal (p > 0.05), as 

such, non-parametric hypothesis tests, the Chi Square test for homogeneity [8], Point-Biserial 

correlation (PB) [9] and Mann Whitney U-test (MW) [10] were selected.  

 

 
Figure 2. Scatter plot of percentage of PRB usage (uplink) with hypothesis tests 

 

As depicted in Figure 2, an example out of the 12 predictor features, we observe in the scatter 

plot visualisation a difference between the means that is supported by a Point-Biserial 

correlation coefficient, rpb, of -0.105 that is statistically significant (p < 0.001), indicating a 

weak negative correlation where cells with lower percentages of PRB usage (uplink) tend to 

have anomalous behaviour. This is reinforced by a statistically significant difference in the 

means shown by the Mann Whitney U-Test (p < 0.001). As such, the feature is deemed to have 

a statistically significant impact on the outcome feature and is utilised for model training. All 

metric features underwent the above analysis, however, a separate hypothesis test, the Chi 

Square test for homogeneity (CS) was conducted for the nominal feature “Cell ID”.  

 

   
Figure 3. Histogram of percentage of PRB usage (uplink) (left) 

Figure 4. Histogram of mean active UE devices (uplink) (middle) 

Figure 5. Histogram of maximum active UE devices (downlink) (right) 

 

Data distribution was subsequently assessed through histograms and three types of distributions 

were observed among the 11 metric features: (a) exponential distribution as seen in Figure 2 

with traits such as a peak at 0 and a long right tail. (b) Bimodal-Lognormal distribution as seen 
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in Figure 3, with a sudden peak at 0 and another peak in a log normal distribution around 1.0. 

(c) Normal distribution as seen in Figure 4, all features of this category had integer only values. 

All features were hence categorised into their different data distribution types. The table below 

illustrates the summary of the EDA findings, which will be used to influence future processes.  

 

Table 2. Summary of EDA findings on twelve predictor features (excluding “Time”) (3dp) 

Feature Name Distribution SW CS MW PB 

p-value rpb 

Percentage of PRB usage (uplink) Exponential 

 

.000 NA 

 

.000 .000 -.105 

Percentage of PRB usage (downlink) .000 .000 .000 -.077 

Mean carried traffic (uplink) .000 .000 .000 -.030 

Mean carried traffic (downlink) .000 .000 .000 -.054 

Maximum carried traffic (uplink) .000 .000 .000 -.049 

Maximum carried traffic (downlink) .000 .000 .003 -.015 

Mean UE devices (uplink) Bimodal-

Lognormal 

.000 .000 .151 -.007 

Mean UE devices (downlink) .000 .000 .000 -.083 

Maximum UE devices (uplink) Normal .000 .917 .068 -.009 

Maximum UE devices (downlink) .000 .000 .000 -.037 

Maximum UE devices (uplink and 

downlink) 

.000 .118 .000 -.023 

Cell ID NA .000 .999 NA 

 

2.3 Experimental Setup 

All data manipulation, model training and creation of GUIs was done in Python 3.11.4, where 

all stochastic functions use a “random_state” parameter of 53 (random seed = 53). The dataset 

was shuffled and split into training (80%) and testing (20%) datasets using scikit-learn’s [11] 

“train_test_split” function with the “shuffle” parameter set to “True”. 

 

2.4 Feature Engineering 

Through transforming or creating new suitable features, feature engineering aims to improve 

predictive performance by extracting the most important information from the data [12]. Three 

new features were created, the “Hour of the day” categorical feature from the “Time” feature 

using ordinal encoding, returning integers ranging from 0 to 24.  Along with two features “Mean 

UE devices encoded (uplink)” and “Mean UE devices encoded (downlink)” which were created 

from the features “Mean UE devices (uplink)” and “Mean UE devices (downlink)” respectively 

using one hot encoding, returning 1 if the value of the original feature is 0 and 0 if the value is 

not, extracting information from the bimodal trait observed during the EDA component. These 

features were then statistically analysed to determine feature importance, as shown in Table 3. 

 

Table 3. Summary of Chi-Square test results on three new created features (3dp) 

Feature Name p-value of CS Test for 

Homogeneity 

p-value of CS Test for 

Independence 

Hour of the day .763 NA 

Mean UE devices encoded (uplink) NA .047 

Mean UE devices encoded (downlink) NA .001 
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Only predictor features identified during EDA that had a statistically significant effect on the 

outcome feature subsequently underwent pre-processing as illustrated in Figure 6, where these 

features were transformed into numeric forms with the most important information captured. 

The pre-processor was fit on the training data and used to transform all data.  

 

 
Figure 6. Flowchart of pre-processor process 

 

For nominal features, on top of the one-hot encoding already done during the creation of the 

“Mean UE devices encoded (uplink)” and “Mean UE devices encoded (downlink)” features, 

the “Cell ID” feature had also under went one hot encoding, resulting in the creation of 33 

different features, one for each cell, each feature returning a value of 1 if the Cell ID matches 

with the assigned feature and returning a value of 0 if it does not.  

 

The metric features were further categorised into normally distributed, and exponential or 

lognormal distributed features based on observations of the data distributions made during 

EDA. Exponential or Lognormal features would undergo a log transformation in order to 

normalise the data, improving model performance and training stability. These features would 

thereafter undergo scaling along with the normally distributed data, where the feature is scaled 

to have a mean of 0 and a standard deviation of 1. Scaling ensures that the magnitude of 

influence each feature has on the ML model is comparable and reduces excessive bias. 

 

2.5 Model Training and Hyperparameter Tuning 

The two selected ML models for training are the Decision Tree (DT) model [13], which will 

utilise “scikit-learn”’s “DecisionTreeClassifier()” function, and the eXtreme Gradient Boosting 

(XGBoost) model [14], which will utilise “xgboost”’s “XGBClassifier()” function, which is an 

ensemble learning technique that consists of multiple decision trees building upon the residuals 

of the previous tree. The chosen objective function for hyperparameter tuning is the F1-score: 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

where precision is the fraction of true positives over predicted positives and recall is the fraction 

of true positives over actual positives. The F1 score ranges from a perfect score of 1 to the worst 
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possible score of 0, it is the selected objective function due to its utilisation of both precision 

and recall in a manner which scores models with more balanced precision and recall values 

higher, it hence is more suitable for the imbalanced classification dataset being used. 

 

Hyperparameter tuning of the models begins with the creation of a study in the Optuna library 

[15], the first trial then begins with stratified 10-fold validation [16] for both models, splitting 

the processed training dataset into a new validation (10%) and training dataset (90%) over 10 

folds. Stratified k-fold validation is the selected validation method as it addresses the 

imbalanced dataset by ensuring each fold has the same proportion of anomalous to normal cell 

behaviour as the original training dataset. The function is performed using the 

“StratifiedKFold()” function in “scikit-learn” with the “shuffle” parameter set to “True”.  

 

Table 3. Table of selected hyperparameters and ranges for DT and XGBoost Model 

Decision Tree XGBoost 

Hyperparameter Range Type Hyperparameter Range Type 

max_depth 5 - 500 Integer n_estimators 50 - 1000 Integer 

min_samples_split 2 - 100 Integer max_depth 5 - 500 Integer 

min_samples_leaf 2 - 100 Integer learning_rate 0.00001 - 0.1 Float 

max_leaf_nodes 2 - 2000 Integer subsample 0 - 1 Float 

ccp_alpha 0 - 0.01 Float colsample_bytree 0 - 1 Float 

NA colsample_bylevel 0 - 1 Float 

 

A random set of hyperparameters is then chosen from specified ranges shown in Table 3, where 

all non-specified hyperparameters use the default values described in their respective library 

documentation. For each fold, the models are subsequently fitted with the chosen 

hyperparameters on the new training data and tested on the validation data to obtain a F1 score, 

the mean F1 score of all the folds is then calculated, indicating the performance of the model 

with the chosen set of hyperparameters. In the following trial, the hyperparameters will be tuned 

using Optuna’s optimisation algorithm based on the mean F1 score of the previous trial, aiming 

for a “maximised” F1 score. The DT model ran 100 trials while the XGBoost model only ran 5 

trials due to its increased computational intensity. After all trials are complete, the trial with the 

highest mean F1 score is selected as the model with the best performing hyperparameters. This 

set of hyperparameters is then used to fit the final model on the entirety of the training data.  

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Model Evaluation 

The two fitted ML models made predictions for the outcome feature “Behaviour” based on the 

testing dataset and was compared against the actual results as shown in the confusion matrix 

[17] in Table 4, showing a tabular summary of the number of correct and incorrect predictions. 

 

Table 4. Table of Confusion Matrix for DT and XGBoost models 

 Decision Tree XGBoost 

 Predicted Predicted 

 Normal Anomalous Normal Anomalous 

Actual Normal 5296 50 5346 0 

Anomalous 204 1831 77 1958 
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It is observed from the confusion matrix that the XGBoost model particularly excels at 

minimising false positives, having a perfect precision for anomalous behaviour of 1.00 and 

creating 0 false positive predictions. However, it has a lower recall for anomalous behaviour of 

0.962, indicating that the model prioritises accurate anomalous predictions over predicting all 

true anomalies. The DT model similarly prioritises accurate anomalous predictions but to a 

larger extent, with a greater precision for anomalous behaviour of 0.973 than its recall for 

anomalous behaviour of 0.900.  

 

A high F1 score was also calculated for both models, with the XGBoost model being slightly 

higher at 0.980 compared to the DT model’s F1 score of 0.966. Hence, not only does the 

XGBoost model have a greater overall accuracy and score than the DT model, it also has a 

better balance between precision and recall values. 

 

  
Figure 7. Receiver Operating Characteristic (ROC) curve of DT and XGBoost model 

Figure 8. Precision Recall Display (PRD) of DT and XGBoost model 

 

Both models were subsequently evaluated using a ROC curve [18], shown in Figure 7, which 

denotes the true positive rate and false positive rate of the models at different thresholds, where 

a higher true positive rate across all thresholds indicates better model performance. Both models 

are significantly higher than the “Baseline”, which acts as a random guess model that obtains 

no information from the predictor features.  

 

It was observed that the XGBoost model had performed better than the DT model at all possible 

thresholds, coming exceedingly close to being a perfect model of having a true positive rate of 

1.0 when the false positive rate is 0.0. This is further reinforced by the Area Under the Curve 

(AUC) metric, where a greater AUC value indicates higher true positive rates across all 

thresholds. The XGBoost model had a AUC value of 0.99996 which was greater than the AUC 

value of 0.98596 for the DT model.  

 

The PRD [18], shown in Figure 8, is capable of evaluating model performance in imbalanced 

datasets better than ROC curves as it plots the trade-off between precision and recall across 

different thresholds. Likewise, the XGBoost model outperforms the DT model, having either 

greater or equal precision and recall at all thresholds. The XGBoost model also has a high AUC 

value of 0.99989 compared to the DT model’s AUC value of 0.97420. 
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3.2 Model Explanation 

 

 

Figure 9. Bar chart of top 10 SHapley Additive Explainer (SHAP) values for DT model (left) 

Figure 10. Bar chart of top 10 SHAP values for XGBoost model (right) 

 

In order to identify the features that had the largest magnitude of influence on the models and 

the greatest feature importance, SHAP [18] values for each feature was found for all data points 

in the testing dataset, and the mean of the absolute SHAP values were found and plotted. SHAP 

values are based off cooperative game theory, determining how much the changing of a feature 

would affect the outcome of the predictive model, effectively identifying feature importance. 

This was done using the “tree.explainer()” and “summary_plot” functions in the “shap” library. 

 

As shown in Figure 9, the DT model is heavily influenced by mainly two features, “Mean UE 

devices (downlink)” with a mean absolute SHAP value around 0.56 and “Percentage of PRB 

Usage (uplink)” with a mean absolute SHAP value around 0.17. Similarly, the XGBoost model 

is most influenced by the same two features but with reversed communication directions, with 

a mean absolute SHAP value around 0.58 for “Mean UE devices (uplink)” and a mean SHAP 

value around 0.43 for “Percentage of PRB Usage (downlink)”.  

 

These 4 features were generally observed to have some of the strongest point biserial correlation 

coefficients during the EDA component which would justify their high mean absolute SHAP 

values. The XGBoost model is also observed to have greater mean absolute SHAP values for 

other features besides the two most influential features unlike the DT model, which could 

hypothetically explain for the difference in predictive performance. Whereby the DT model is 

prone to overreliance on the two most influential features and is thus more likely to output 

different predictions due to minor fluctuations in the two aforementioned features. In contrast, 

the XGBoost model is more consistently influenced by a large set of features and is hence more 

reliable, leading to greater predictive performance. 

 

 

4. CONCLUSION 

 

4.1 Real-world Implementation 
The DT model and XGBoost model were able to output highly accurate predictions and have  
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excellent model predictive performances, though the XGBoost model has exceedingly higher 

model performance across all evaluation metrics. The models are thus a consistently accurate 

way of predicting radio cell behaviour and could be a feasible method to implementing dynamic 

RRM. 

 

However, one of the largest drawbacks of the model is its reliance on completeness of data 

quality, requiring values for all features in order to make predictions, which may not be feasible 

during real-life implementation and data collection. Although the usage of methods such as 

imputation could resolve the issue it may result in significant drawbacks in accuracy. 

 

4.2 Graphical User Interface 

A Graphical User Interface (GUI) was created utilising the “streamlit” library, creating an 

interface for MNOs and users to create predictions with raw testing data input or to evaluate 

the ML models with the aforementioned evaluation metrics. The website application can be 

accessed under the “Annex B: GUI Website Application” section. 

 

 

5. LIMITATIONS OF STUDY 

 

This study is primarily focussed on the application of ML for cell behaviour prediction, but 

does not go into detail or development of the dynamic RRM system itself, placing heavier 

emphasis on the ML models. Future studies could delve into creating a dynamic RRM system 

capable of reconfiguring identified anomalies and evaluating effectiveness of the entire system. 

 

Additionally, this study is limited with a dataset pertaining to just one fixed LTE deployment. 

The ML models may not perform up to its expected standard when used in new and foreign 

deployments due to the ML models usage of certain location specific features such as “Cell ID” 

and the fluctuation of telemetry data and patterns from region to region. A more comprehensive 

study could utilise data from multiple deployments and minimise location-specific data. An 

alternative fix for this in future applications would be the integration of Machine Learning 

Operations (MLOps) for the continued training and updating of the ML models to maintain 

model performance and for continued adaptation in different environments. 
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ANNEX 

 

Annex A: Data Availability 

All raw telemetry data utilised in this project is openly available at the Kaggle database and can 

be accessed at https://www.kaggle.com/competitions/anomaly-detection-in-4g-cellular-

networks/overview from Vidal, J. 2020. Anomaly detection in 4G cellular networks.  

  

Annex B: GUI Website Application 

The GUI website application can be accessed at https://anomalydetectionlte.streamlit.app.  

 

Annex C: Final hyperparameters for ML models 

All non-specified hyperparameters use the default values as specified in the respective libraries’ 

documentation.  

 

Table 5. Table of final hyperparameters for DT and XGBoost Model (10 dp for float types) 

Decision Tree XGBoost 

Hyperparameter Value Hyperparameter Value 

max_depth 443 n_estimators 447 

min_samples_split 47 max_depth 178 

min_samples_leaf 4 learning_rate 0.0440782828 

max_leaf_nodes 678 subsample 0.7540475616 

ccp_alpha 0.0001867337 colsample_bytree 0.0264677405 

NA colsample_bylevel 0.3361845730 

Annex D: Exploratory Data Analysis Plots 

 

https://dl.acm.org/doi/proceedings/10.1145/3292500
https://dl.acm.org/doi/proceedings/10.1145/3292500
https://www.kaggle.com/competitions/anomaly-detection-in-4g-cellular-networks/overview
https://www.kaggle.com/competitions/anomaly-detection-in-4g-cellular-networks/overview
https://www.kaggle.com/competitions/anomaly-detection-in-4g-cellular-networks/overview
https://www.kaggle.com/competitions/anomaly-detection-in-4g-cellular-networks/overview
https://anomalydetectionlte.streamlit.app/


 

13 

 

 
Figure 11. Normal and Anomalous box plots of percentage of PRB usage (uplink) 

 

 

  
Figure 12. Normal and Anomalous box plots of percentage of PRB usage (downlink) 
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Figure 13. Normal and Anomalous box plots of mean carried traffic (downlink) 

 

 

 
Figure 14. Normal and Anomalous box plots of mean carried traffic (uplink) 
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Figure 15. Normal and Anomalous box plots of maximum carried traffic (uplink) 

 

 

 
Figure 16. Normal and Anomalous box plots of maximum carried traffic (downlink) 



 

16 

 

 
Figure 17. Normal and Anomalous box plots of mean UE devices (downlink) 

 

 

 
Figure 1. Normal and Anomalous box plots of mean UE devices (Uplink) 
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Figure 18. Normal and Anomalous box plots of maximum UE devices (downlink) 

 

 

 
Figure 19. Normal and Anomalous box plots of maximum UE devices (uplink) 
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Figure 20. Normal and Anomalous box plots of maximum UE devices (uplink and downlink) 

 

 

 
Figure 2. Scatter plot of percentage of PRB usage (uplink) with hypothesis tests 



 

19 

 

 
Figure 21. Scatter plot of percentage of PRB usage (downlink) with hypothesis tests  

 

 

 
Figure 22. Scatter plot of mean carried traffic (downlink) with hypothesis tests 
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Figure 23. Scatter plot of mean carried traffic (uplink) with hypothesis tests  

 

 

 
Figure 24. Scatter plot of maximum carried traffic (uplink) with hypothesis tests 
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Figure 25. Scatter plot of maximum carried traffic (downlink) with hypothesis tests 

 

 

 
Figure 26. Scatter plot of mean UE devices (downlink) with hypothesis tests 



 

22 

 

 
Figure 27. Scatter plot of mean UE devices (uplink) with hypothesis tests 

 

 

 
Figure 28. Scatter plot of maximum UE devices (downlink) with hypothesis tests 
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Figure 29. Scatter plot of maximum UE devices (uplink) with hypothesis tests 

 

 

 
Figure 30. Scatter plot of maximum UE devices (uplink and downlink) with hypothesis tests 
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Figure 3. Histogram of percentage of PRB usage (uplink) (left) 

Figure 31. Histogram of percentage of PRB usage (downlink) (right) 

 

 

 
Figure 32. Histogram of mean carried traffic (downlink) (left) 

Figure 33. Histogram of mean carried traffic (uplink) (right) 
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Figure 34. Histogram of maximum carried traffic (uplink) (left) 

Figure 35. Histogram of maximum carried traffic (downlink) (right) 

 

 

 
Figure 36. Histogram of mean UE devices (downlink) (left) 

Figure 4. Histogram of mean UE devices (uplink) (right) 
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 Figure 5. Histogram of maximum UE devices (downlink) (left) 

Figure 37. Histogram of maximum UE devices (uplink) (right) 

 

 

 
Figure 38. Histogram of maximum UE devices (uplink and downlink) 

 


