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Abstract. This paper presents a novel Reinforcement Learning approach towards De Novo Chemical Struc-

ture Elucidation, reducing the generative task to a simple regressive task using a hybrid between A* search 

and beam search, while additionally constraining the molecule, generated sequentially, on graph connectivity 

and chemical formula, on top of valency as explored in other works. Graph convolution was also used in 

generating graph-level embeddings to take into account the permutation-invariant property of graphs, as well 

as on fragmentation trees as a representation of the mass spectrum. We find that valency and connectivity re-

strictions have significant contributions in structure generation towards the end of the generation, and that 

this approach appears to have higher relevance in tasks involving smaller molecules.  
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1 Introduction  

Chemical Structure Elucidation (CSE) is a task that is known to be exceedingly difficult to 

complete by hand, thus, the potential use of computers to aid in this task has been ex-

plored[1,2]. However, this task also does not have convenient algorithmic solutions, as MS/MS 

spectra contain no information on structures, only molecular masses of fragments, while con-

sidering all permutations will be unfeasible with large molecules[3] due to too much time be-

ing taken. Thus, to fully complete this task computationally, the use of some form of Artifi-

cial Intelligence has been explored.  

However, de Novo CSE is a generative task with very little training data, with an estimated 

60,000 molecules available after combining all large datasets available[4], while other genera-

tive tasks are typically trained with >500,000 structures.[5,6,7] Therefore, considering the high-

er performance of highly algorithmic or statistical approaches as compared to neural ap-

proaches with low amounts of training data,[8]the former is more likely successful for this 

task. Thus, solutions to this problem, for the foreseeable future with similar datasets, will 

likely require the use of algorithms to aid it, reducing the task to a simpler task, to achieve 

good results.  

Similar molecule generation tasks[5,6] commonly use textual representations of chemicals[9] 

to generate a molecule with a structure, allowing the generation of molecules using Recurrent 

Neural Networks autoregressively, as one-shot generation models are extremely limited. De-

spite their ability to generate molecules of any required size given the scenario due to its se-

quential nature, molecules are high-dimensional structures which have been unable to accu-

rately be represented textually[10], despite many extensions, and fail to be permutation invari-

ant. Therefore, it would likely be better to have a model that represents molecules as graphs.  

Currently trending methods like Graph Diffusion attempt to address the issue of such 

methods not being permutation invariant[11], as a direct representation of the molecule. These 

methods perform a process similar to diffusion in images, but on graphs and their adjacency 

matrices instead[12,13,14]. However, as mentioned in those papers, these methods suffer from 

scalability difficulties, as their model used in diffusion given graph node features or adjacen-
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cy matrices has a fixed size, and despite them using zero padding to allow for the generation 

of molecules below the maximum size, they still need sufficient model size and training data 

for molecules of large sizes for their model to work in those cases, and such data is hard to 

come by and can cause poor model performance in those scenarios.  

Current methods also fail to make use of the specific additional constraints this specific 

task provides, which are molecular formula being able to be inferred from the mass spec-

trum[15], and the rules of chemical molecules such as valency and connectivity. Most meth-

ods, such as those mentioned above, do not enforce the above rules, which do not guarantee 

chemical validity of generated molecules, while some others that do[16,17] fail to let it be con-

strained by a molecular formula, especially if considering hydrogen atoms.  

Therefore, some approaches perform spectra database search.[18,19,20,21,22] However those 

have very limited use, especially considering that there are few molecules with their spectra 

recorded in databases. Other methods attempt to extend to other databases, but they fail to 

perform the generative task, only searching, being inherently limited.  

Therefore, this paper intends to explore a reinforcement learning solution to this that miti-

gates the aforementioned issues. The reinforcement learning solution would only approxi-

mate the value of next states from a state, reducing the task to a regressive score predictor, 

providing many states for training the predictor. The action space will also be constrained to 

enforce valency and connectivity rules, as well as a target molecular formula. The molecule 

will be represented as a graph itself, and graph convolution for graph-level embeddings will 

be used on it to get the next state, while its generation will be sequential. These are detailed in 

section 2.  

2 Materials and methods  

2.1 Enforcing stability of molecules  

As mentioned in the introduction, we enforce molecule stability in this system, making use of 

the knowledge that this is a molecular generation task. The initial state of this reinforcement 

learning environment contains the target, the mass spectrum, and all the atoms in the molecu-

lar formula (excluding Hydrogen), with no bonds between these atoms (except aromatic 

bond, see end of 2.1), and each having some amount of hydrogens bonded to it that reflects 

its usual amount of bonds (e.g. C will have 4 Hs, N will have 3, while P will have 5). The 

actions involve selecting two different atoms from the molecule, and forming a bond between 

them (single, double, or triple), replacing Hs. The action space is restricted based on not only 

valency, but also considers graph connectivity. The following is the process for determining 

if an action is valid, after considering the valency:  

• Let the number of connected components be 𝑛. Ensure that, at the end of the action, the 

number of remaining Hs in the entire graph ≤ 2𝑛 − 2. This makes sure that it is theoreti-

cally possible to connect the graph.  

• Check that the sum of the number of remaining Hs in each component is at least 2 for all 

but 2 of the components, and at least 1 for the last 2 components (to make sure it is possi-

ble to make bonds to connect the components)  

 

The above is determined using a modified Union-Find Data Structure, which also stores the 

total number of remaining Hs in each component. Though the above rules assume that the 

molecule has no formal charge, in the context of organic compounds, a very large majority of 
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compounds large enough to not be trivially identified will fulfil those constraints. In testing, 

there were zero scenarios of the above resulting in invalid states.  

In addition, a slight compromise, made to ensure aromatic bonds are only found in rings, is 

to make there no actions to create aromatic bonds, and such rings may only exist if specified 

in the starting state. There are a finite number of structures considered aromatic, and it there-

fore follows that it could be better to enforce that finite set, rather than allow the model to 

make mistakes creating aromatic bonds, or learn not to create them in fear of generating inva-

lid molecules.  

2.2 Maintaining permutation invariance with scalability  

As mentioned in the introduction, permutation 

invariance in graphs is a property that is theo-

retically helpful, yet graph diffusion methods 

fail to scale to larger sizes than trained. In-

stead, this paper proposes that permutation 

invariance in graphs is only important in ex-

tracting its features, while its generation can 

be sequential. The asymmetries caused by se-

quential generation are not seen as an issue, 

but even necessary for effective generation of 

molecules. For example, if the target molecule 

has its SMILES representation C#CC, fully 

symmetrical (and non-sequential) generation 

would cause both bonds to be the same, as the 

environment is also fully symmetrical.  

2.3 The challenge of the low volume of training data available  

Also, to combat the lack of training data for this task, in this reinforcement learning environ-

ment, the only model used would be one that predicts the ‘value’ of possible resulting states 

after taking actions from a state. States that lead to the target state should have higher pre-

dicted values, while others will have a low value.  

This ‘value’ is calculated by running the partially complete molecule through a Conditional 

Graph Convolutional Network that considers edge features by running them through a multi-

layer perceptron to get a matrix to multiply the incoming node features by, taking inspiration 

from that used in another paper titled “Neural Message Passing for Quantum Chemistry”[23] 

The node features used were the degree, remaining valence, and a one-hot encoding of the 

atom type, while the edge features were the bond energy (set to 0 temporarily due to the lack 

of a prediction mechanism), and a one-hot encoding of the bond type (single, double, triple, 

aromatic) The conditional features in the aforementioned network will be the output from 

another network, explained in 2.4.  

This causes each individual molecule to provide an amount of states as training data that is 

at least exponential respective to the amount of atoms in them, due to the extremely large 

state space in this task. Taking inspiration from anomaly detection[24], where the training data 

is largely non-anomalous due to the prohibitive cost of having anomalous training data, we 

take anomalies as states that are not in the training data, and vice versa, allowing for effective 

learning despite only one type of training data (correct states) being available. Then, we can 

Figure 1. A visualization of the necessity of asymmetric 

generation of molecules. 
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simply train the model on states which can be represented by combinations of the bonds be-

ing removed. The loss used will be the same as that used in[24].  

2.4 The challenge of mass spectrum noise  

Another challenge with this task, not mentioned in the introduction, is that slight errors in 

mass spectra, peak shifts, are common, and training a network to be resistant to such errors 

requires many test cases. Also, at each peak, there may be multiple possible molecular frag-

ments that match 

the mass spectrum.  

Fragmentation 

Trees[25] have been 

developed and used 

in the SIRIUS 

software[26], as a 

method of viewing 

the fragmentation 

process. This gives 

the molecular for-

mula of each frag-

ment, which has a 

lot of potential as a 

representation of the mass spectrum, as it is created from a mass spectrum itself. However, to 

the authors’ knowledge, this, thus far, has only been used in the same way as it had been used 

in CSI:FingerID and IOKR[26,27], where they compared fragmentation trees instead of mass 

spectra when reconstructing a molecular fingerprint. This is likely because fragmentation 

trees do not have a fixed size, thus cannot be used in a model easily.  

In this paper, we intend to make more use of this, running the mass spectrum through a 

graph convolution network, with directed edges pointing towards the root, and taking the fi-

nal node features of the root node as an output of this model, an embedding meant to repre-

sent the tree. The fragments are represented with 7-length vectors, the first 6 values being the 

number of each atom (CHNOPS) in the fragment, and the last being the molecular mass of 

the fragment.  

2.5 Overview of method  

Firstly, we pretrain a Fragmentation Tree Graph Convolutional Network (FTree GCN), en-

suring that its embedding contains relevant information by having a predictor make it predict 

the original mass spectrum back. We test this by getting the mean squared error of the value 

for relative intensity at each m/z ratio bucket range. We also visualize the mass spectra in 

some of the cases, for comparison purposes.  

Then, we train a Conditional Graph Convolutional Network to take in a partially built mol-

ecule, and the embedding of the mass spectrum given by the FTree GCN as a conditioning 

feature, to predict low scores for correct states and high scores for wrong states. This is done 

by choosing combinations of the bonds of the target molecule to remove, acting as intermedi-

ate states. This will use anomaly detection concepts seen in[24], as mentioned in section 2.3.  

             

Fig. 2. An illustration of graph convolution’s effect on the root node of a fragmentation tree. 

The figure on the left is taken from[27] 
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Fig. 3. A visualization of the training process of our models. The seemingly peculiar training targets are due to adapting 

anomaly detection methods[24] for this purpose, detailed in section 2.3.  
 

This will be tested in two ways. Firstly, sample states, both correct and wrong, will be taken, 

and their scores given by the model will be recorded, then plotted on a histogram, showing 

the separability of the two by the model. Then, a variation of the A* search algorithm will be 

used to try searching for the correct target state given an initial state (with aromatic bonds 

already present). The heuristic used in this algorithm will be:  

(1 − 𝑠𝑐𝑜𝑟𝑒𝑎𝑛𝑜𝑚𝑎𝑙𝑦) ∗ (𝐻𝑡/2 )  −  𝐻𝑙𝑒𝑓𝑡 

Where 𝑠𝑐𝑜𝑟𝑒𝑎𝑛𝑜𝑚𝑎𝑙𝑦 is the anomaly score by the model, 𝐻𝑡 is the total number of hydro-

gens in the initial state subtracted by the target state, and 𝐻𝑙𝑒𝑓𝑡 is the number of hydrogens in 

the current state subtracted by the target state. 

 

 

Fig. 4. A visualization of the generative A* search performed by our model, with the heuristic mentioned in section 2.5. The 

number in the priority queue is the negative of the heuristic, as Python’s priority queue takes the smallest value.  

             

                  

        

           
         

                       
                     
                        
                     

                 

          

         
          
            
        

 
            

 
 
  
        

        

                   
                    
                   

           

               
                
                 

                  
                   
                  

                               
                                  
                         

 

                                                   

                

     
             

      
             

                   

           
         

          
        

                    
              

              

        
       

  

             
       

      

   

   

 

     

                
            

     
         

                    
                 
                

         
         

   
         

       

          
               

            

            

            

            

             

              
               
              

     

           

           

     

     
        

     
        
      

                   



6 

So, a state being less anomalous and closer to the goal (less Hs left) will be better for the 

heuristic. To save memory, this will also use the beam width concept in beam search, always 

only storing the actions leading to the potential new states with the best 100 heuristic scores. 

Below is a visualization of the A* search in action.  

 

3 Results & Discussion  

 

Fig. 5. Fragment Tree Graph Convolutional Network and predictor performance in predicting the original mass spectrum, 

given a grid search of hyperparameters for GCN learning rate and predictor learning rate.  

We used the CANOPUS dataset in our tests, constructing fragmentation trees using the 

SIRIUS 4 software[15]. For reproducibility, all our code, as well as figures, can be found in 

this GitHub Repository: https://github.com/Simul-Eqn/CSE-final  

When pretraining the FTree GCN, we used a learning rate of 3e-07 for the FTree GCN, and 

searched multiple learning rates for the predictor, with results plotted in figure 5, using Mean 

Squared Error loss. Since there is a lot of noise in these mass spectra, some amount of loss is 

to be expected. Figures related to this training step, and example mass spectrum predictions 

(using model at epoch 20 with predictor learning rate 1e-06) can be found under 

RL_attempt/figures/mass_spec_comparison in the aforementioned GitHub Repository.  

We took the model at epoch 20 with predictor learning rate 1e-06 as an example model and 

trained the conditional graph convolutional network on molecules with at most 12 non-

Hydrogen atoms, and that were either non-aromatic or with a benzene ring, then allowed all 

molecules with at most 12 non-Hydrogen atoms, then further relaxed it to at most 15 non-H 

atoms. We tested them on their accuracy in giving anomaly scores, where the best histograms 

are shown in figure 6. The mean and standard deviation at each epoch are tabled in annex 1.  

Then, we used the ASTAR search algorithm with the heuristic mentioned in section 2.5 to 

attempt the main Chemical Structure Elucidation task. Figure 7 shows the success rates of our 

models compared to taking random actions given our restrictions, starting from an initial state 

of only aromatic bonds, taking up to 2 different actions from each state, and figure 8 is the 

equivalent with up to 3 different actions per state instead. Figure 9 shows the success rates if 

instead starting some amount of steps (depth) from the end, when taking up to 2 different ac-

tions per state, and figure 10 shows the same but with up to 3 actions per state instead. 

Bar charts and graphs of the action accuracy rates are available in the annex 2. The accura-

cy of the actions was evaluated during the search, where each action taken would be com-

pared to the list of correct actions.  

 

https://github.com/Simul-Eqn/CSE-final
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Fig. 6. Anomaly scores for test states with stated constraints. Green refers to normal states, considered non-anomalous, while 

red is considered anomalous. Corresponding figures at different training epochs are available in the GitHub repository, under 

RL_attempt/figures/non_anomalous_[case]_scores_visualization, where [case] is the task type, such as “max_12”  

 

Fig. 7. A* search success rates in different scenarios, starting from initial state with only aromatic bonds, taking up to 2 

actions per state.  

 

 

Fig. 8. A* search success rates in different scenarios, starting from initial state with only aromatic bonds, taking up to 3 

actions per state.  
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Fig. 9. A* search success rates in different scenarios, starting [depth] bonds away from the target state, taking up to 2 actions 

per state.  

 

 
 

 

Fig. 10. A* search success rates in different scenarios, starting [depth] bonds away from the target state, taking up to 3 ac-

tions per state.  

Observing figures 9 and 10, we realise that random actions seem to have comparable perfor-

mance to our model, when running at low to intermediate depths, in the cases with at maxi-

mum 12 or 15 heavy atoms, despite there being a significant separation between normal and 

anomalous states observed in figure 6. In addition, our model’s performance reaches near 0 

around depth 5, yet, from figures 7 and 8, our model has a higher performance at maximum 

depth, especially when considering the case with at maximum 15 heavy atoms. To investigate 

this phenomenon, we graphed the frequency of single bonds as actions taken during the 

search starting [depth] bonds away from the target in figures 11 and 12. The frequency of 

single bonds as actions taken for full searches is in annex 3.  
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Fig. 11. Frequency of single bonds as actions taken during search, starting [depth] bonds away from the target state, taking 

up to 2 actions per state.  

 

 

Fig. 12. Frequency of single bonds as actions taken during search, starting [depth] bonds away from the target state, taking 

up to 3 actions per state.  

As can be very clearly seen in figures 11 and 12, as well as in annex 3, our models appear to 

favour states with more single bonds. Thus, a theorized reason for the model performing only 

marginally better, or even worse, than random at depths from around 5, is that favouring 

states with single bonds, or equivalently, taking more actions that result in the creation of 

single bonds, contributes greatly toward fulfilling the connectivity restriction, and does not 

cause the state to approach the limitation of the valency restriction as much, due to the nature 

of single bonds, allowing more possible actions than if random actions were taken instead, 

increasing the likelihood of choosing an incorrect action.  

Despite this decrease in performance from depths of around 5, in figures 7 and 8, it can be 

seen that, at maximum depth, the model still gets some correct, with better performance than 
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it did around depth 5. This suggests that the model may somehow have the lowest accuracy 

with intermediate depths, while with low or high depths, the model has a higher accuracy.  

This phenomenon could be due to two overlapping factors causing the training to only be 

effective with extreme values for depths: The first is the low amount of training data on states 

at low depths, as fewer bonds are removed so fewer permutations are available, which causes 

performance with lower depths to increase insignificantly during training, and only have per-

formance at higher depths increase significantly. The second is the low amount of restrictions 

on the actions that can be taken at low depths as compared to high depths, not significantly 

affecting performance with higher depths, improving performance with lower depths. Due to 

these, perhaps the performance will be lower with an intermediate depth, while higher with 

depths closer to 1 or the maximum.  

If that is taken to be correct, then the increase in performance due to the restrictions, con-

sidered in the second factor, can be clearly seen in figures 9 and 10, where the models per-

form greatly at a depth of 1 despite there being few training cases close to the target state.  

4 Future work  

Considering the low amount of training data on low depths in this training method, causing 

the model to learn from training data at high depths more, work is to be done in weighing 

these training cases to resolve this issue, or perhaps using focal loss.  

In addition, regarding the potential issue where the model is biased towards taking actions 

that create single bonds mentioned in the discussion, even despite heavy training1, work is to 

be done in considering this bias in the training data and verifying this phenomenon. Since this 

approach enforces model validity, having the model favour non-single bond creation will not 

be an issue as single bonds will eventually have to be created, and this is one of the potential 

solutions to be developed in the future.  

More work should also be done in considering larger molecules, as the model trained on 

larger molecules appears to have performed significantly worse than those trained on smaller 

molecules. Investigation on the effectiveness of taking random actions in these scenarios is 

also to be done.  

The method suggested in this paper also fails in that it does not allow the creation of aro-

matic bonds. A future direction may be considering incorporating the creation of aromatic 

structures in the action space, or otherwise allowing aromatic bonds to be generated by the 

model rather than be incorporated into the initial state.  

Finally, work could be done in incorporating a GNN Explainer–inspired[28] utility for this 

to assist in chemical structure elucidation even when generation fails, and potentially be used 

in generating targeted loss for further training to improve performance.  

5 Acknowledgements  

YS thanks Lim Jing for advice in pretraining the fragmentation tree graph convolutional net-
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1 It is to be noted that, somehow, the bias towards single bonds is not as strong at low depths as compared to high depths, 

despite the aforementioned problems of having little training data at low depths. This question awaits further inquiry, of 

whether it was indeed a product of some generalization by the model, or somehow connected to the valency or connectiv-

ity restrictions, or for other reasons.  
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7 Annex 1. Tables of exact values for anomalous scores  

Scenario  Max 12 heavy atoms, only non-aromatic or 

with one benzene ring, epoch 50  

 

Max 12 heavy 

atoms, epoch 10  

Max 15 heavy 

atoms, epoch 15  

Mean (normal)  0.4595  0.4678 0.4781 

Standard deviation (normal)  0.07603 0.05167 0.1003 

Mean (anomalous)  0.0.7695 0.9167 0.7792 

Standard deviation (anomalous)  0.1277 0.09797 0.1613 

Table 1. Mean and standard deviation of anomalous scores for normal and anomalous states, at different epochs in the men-

tioned scenarios. Note that, for the max 15 heavy atoms scenario, we only tested it on 20 molecules to save time, as each 

molecule could have up to 16384 cases at that size.  

 

 

 

 

 

 

 

 

 

8 Annex 2. Correct action rates graphs  

 

 

Fig. 13. A* search correct action rates in the above scenarios, starting from an initial state with no aromatic bonds, taking up 

to 2 actions per state.  
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Fig. 14. A* search correct action rates in the above scenarios, starting from an initial state with no aromatic bonds, taking up 

to 3 actions per state.  

 

 

 

 

Fig. 15. A* search correct action rates in the above scenarios, starting [depth] bonds away from the target state, taking up to 

2 actions per state.  
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Fig. 16. A* search correct action rates in the above scenarios, starting [depth] bonds away from the target state, taking up to 

3 actions per state.  

 

 

 

 

 

 

 

 

 

9 Annex 3. Frequency of actions taken as single bonds  

 

 

 

Fig. 17. Frequency of single bonds as actions taken during search, starting from an initial state with no aromatic bonds, 

taking up to 2 actions per state.  
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Fig. 18. Frequency of single bonds as actions taken during search, starting from an initial state with no aromatic bonds, 

taking up to 3 actions per state. 

 

 

 

 

 

 

 

 

  

 

 

 


