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1           Introduction  

Synthetic Aperture Radar (SAR) is a remote sensing technique capable of imaging large regions, 

it is useful for many applications involving the detection of objects seen in military surveillance 

or environmental monitoring [1]. Speckle is a type of granular noise that greatly deteriorates the 

quality of images produced by SAR, hence limiting its applications. This inherent phenomenon 

arises from interference between many scattering echos within a resolution cell [2].  Though the 

exact patterns may be random, the properties of the surface or target being imaged affect the 

characteristics of the speckle. Therefore, there are different optimal filters for different types of 

surfaces.  

 

While there is theoretical research on classifying types of materials or environments and how 

they reflect signals [3], real SAR environments are too complex to model, and it is difficult to 

pinpoint exactly how surface features affect the resulting speckle pattern. Filtering simpler 

images with larger homogeneous regions generally tends to perform better than filtering complex 

images with edges and intricate textures. With this objective in mind, our goal is to empirically 

assess and identify optimal despeckling methods for various surface types. By comparing and 

analysing the performance of common despeckling techniques across a range of surfaces, we aim 

to determine the most effective filters for enhancing the interpretability of SAR data. 

 

2          Methodology  

SAR can be used to map many different kinds of landscapes, like forests, mountains, cities, 

water etc. We hypothesised that landscapes with different surface properties would not be 

despeckled to the same extent by the same filters. Where one filter might suppress speckle noise 

and smooth the image better, another filter might preserve fine textures and details to a higher 

degree. For these experiments, we proposed that terrain can be grouped into three main types for 

faster analysis: urban, maritime and rural, as shown in Table 1.  

 Urban Maritime Rural 

Scatterers Buildings, ground 

(concrete, grass) 

Water, ships Vegetation, ground 

(clay, soil, snow etc.) 

Aim of filter Preserving fine details of Preserving isolated point Preserving topological 



closely-packed structures  targets (ships) on a highly 

homogenous surface 

information about the 

surface 

Table 1. Proposed categories of terrain and their differing characteristics 

 

2.1           Dataset 

The dataset used is a Sentinel 1 SAR Strip Map Multi-Look image in horizontal transmission and 

reception (HH) polarisation in ground range detected (GRD) format. 3 patches of size 

5000×5000 pixels that correspond with the 3 categories of terrain above were identified. Then, 

each big patch is further divided into 100 small patches of size 500×500 pixels. To simulate 

clean-noisy image pairs, the patches were treated as clean images, and a seeded noise pattern 

following a Gamma distribution was multiplied pixel-wise to each individual small patch to form 

a noisy image equivalent. The gamma distribution was chosen because it was identified [4, 5, 6] 

that the foreseen power of a SAR image is gamma-distributed [7, 8, 9]. Meanwhile, real images 

refer to the unprocessed patches cropped from the dataset. 

 

Simulated images were necessary in order to apply metrics which all require a clean “ground 

truth” image for the filtered resultant image to be compared to. Applying more metrics that all 

measure different aspects of a filter’s performance created more avenues for quantitative 

analysis, allowing us to better predict the performance of the filter when applied to random, real 

speckled SAR images. However, synthetic tests do not fully account for the complexities present 

in actual SAR data. Therefore, filter application using actual SAR data is necessary to validate 

the robustness of the filtering approaches to real, random speckle patterns. Our project 

methodology is summarised in Figure 1. 

 
Figure 1. Project Methodology  

 

2.2           Filters 

Figure 2 is a diagram showing the categorisation of the filters [9]. 
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Figure 2. Despeckling Methods 

2.2.1 Bayesian Spatial Filters 

Bayesian filters in the spatial domain make use of a moving window that calculates the intensity 

value of the centre pixel using local statistics. The Lee filter uses a standard deviation based filter 

[10], calculated using Eqn. 1. 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =  𝑤𝑚 + [1 −
𝑤𝑣
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where wm, wv and wc are the mean, variance and centre intensity of the window, and Im and Iv are 

the mean and variance of the image.      

 

The Frost filter exponentially decreases the weight of the surrounding pixels based on the 

Euclidean distance (resulting in a circularly symmetric window) before coming up with a 

weighted average of the window [11] as shown in Eqn. 2. . 
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where In is the intensity of pixels in a window, ei
-AT represents weights, A is the damping factor, 

and T is the Euclidean distance between pixels.  

 

Meanwhile, the Maximum A Posterior (MAP) [12] filter models speckle noise as a gamma 

distribution as shown in Eqn. 3. 
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intensities of the window and centre pixel respectively.  
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When implementing the filters in Python, some parameters are required for the Lee and Frost 

filters. For the purpose of this comparison, the parameters have been set to: window size (5×5), 

noise model (multiplicative, Gamma distribution), noise mean (0), noise variance (0.2), and 

DampFactor (3). 

 

2.2.2 Bayesian Transform Filters 

Bayesian filters in the transform domain represent signals as coefficient distributions in the 

frequency and amplitude domain. Discrete wavelet transform (DWT) decomposes the image into 

wavelets, and has the advantage of being localised and capable of multi-resolutional analysis 

unlike Fourier Transforms, improving its performance and adaptability in image denoising. 

Coefficients are thresholded to filter out details from noise and a cleaner image then 

reconstructed. Methods of determining an ideal threshold differ by their approach, with some 

like the Universal Threshold (UT) [13] filtering by amplitudes while others like the Elliptical 

Wavelet Coefficient Shrinkage (EWCS) [14] utilise distribution instead. 

 

2.2.3 Non-Bayesian Filters 

The main non-Bayesian filter chosen was despeckling through machine learning (ML). The 

model used is the SAR-CNN model [15], trained on 500×500 patches cropped from a separate 

Sentinel 1-A Strip Map Multi-Look image in HH polarisation in GRD format. For each surface 

type, 100 patches with added gamma-distributed noise were used, making a total of 300 images. 

As a state-of-the-art despeckling method, machine learning represents a promising direction for 

despeckling as it is able to learn an implicit model of the data, allowing it to despeckle data of 

the same type after training.  



2.2           Filter performance metrics  

Table 2. Metrics and formulas 

 

When comparing simulated data, all five metrics listed in Table 2 were used. The utilisation of 

multiple metrics is crucial as each metric captures different aspects of despeckling performance. 

While ENL focuses on speckle reduction, SSIM emphasises structural similarity, PSNR and 

SNR evaluate noise levels, and MSE provides an overall measure of pixel-wise discrepancies For 

real data, only ENL and visual inspection was used to evaluate the image.  

Reference Performance 

metrics 

Mathematical Formula 

Does not 

require a 

clean image 

Equivalent 

Number of Looks 

(ENL) 

𝐸𝑁𝐿 =  (
𝜇

𝜎
)2  

where μ is the mean and 𝜎 is the standard deviation of 

the image 

Requires a 

clean image 

for 

comparison 

 

Mean square error 

(MSE) 

 𝑀𝑆𝐸 = 𝐸(𝑓 − 𝑓)  =
∑ 𝑓𝑖 − 𝑓𝑖

𝑛
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where 𝑓 , 𝑓  are the intensities of the filtered and 

speckle-free image respectively and 𝑛 is the image size 

 

Structure 

Similarity Index 

Metric (SSIM)  

(2𝜇𝑎𝜇𝑏  +  𝑃1)(2𝜎𝑎𝑏  +  𝑃2)

(𝜇𝑎
2  +  𝜇𝑏

2 +  𝑃1)(𝜎𝑎
2  +  𝜎𝑏

2 +  𝑃2)
 

where µa, µb, σa, σb and σab are the local means, 

standard deviation and cross variance for the clean and 

noisy images, 𝑎 and 𝑏. P1=(0.01*L) and P2=(0.03*L), 

where L is the dynamic range of the pixels 

Signal to noise 

ratio (SNR) 
𝑆𝑁𝑅 =  10𝑙𝑜𝑔10

𝜎

𝑀𝑆𝐸
 

Peak signal to 

noise ratio (PSNR) 
𝑃𝑆𝑁𝑅 =  10𝑙𝑜𝑔10

255 × 255

𝑀𝑆𝐸
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3           Results 

3.1           Simulated data 

 
 

 

 

 

 

 

 

 

 

Surface type / Filter 

Filter 

Noisy Lee Frost MAP Wavelet Machine  

Learning 

Urban 

PSNR 18.0 19.8 19.2 18.7 18.4 19.7 

SNR 0.443 5.9 4.93 4.58 4.56 5.79 

MSE 2440 722 1390 1570 952 977 

ENL 3.65 5.76 7.99 7.59 13.1 6.35 

SSIM 0.628 0.678 0.591 0.565 0.417 0.566 

Surface type / Filter 

Filter 

Noisy Lee Frost MAP Wavelet Machine  

Learning 

Maritime 

PSNR 20.3 24.5 25.3 25.7 25.9 28.6 

SNR -6.60 -1.92 -1.06 -0.655 -0.508 2.13 

MSE 680 234 192 176 170 92.2 

ENL 2.89 7.52 10.7 14.7 34.0 31.8 

SSIM 0.365 0.521 0.561 0.519 0.340 0.480 



Table 3(a), (b) and (c) Quantitative assessment results for urban, maritime and rural image, 

averaged over 100 distinct images 

 

3.2           Real data 
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Figure 3. Visual representation of filter performance on real SAR data 
 

Surface type / Filter 

Filters 

Lee Frost MAP Wavelet Machine  

Learning 

Urban 
ENL 4.69 6.17 5.78 7.32 6.35 

Surface type / Filter 

Filter 

Noisy Lee Frost MAP Wavelet Machine  

Learning 

Rural 

PSNR 17.8 21.1 21.1 20.8 20.8 22.3 

SNR -3.16 2.05 2.03 1.76 1.69 3.51 

MSE 180 503 507 540 549 391 

ENL 4.49 9.97 15.6 14.9 43.9 15.1 

SSIM 0.487 0.599 0.544 0.514 0.301 0.472 

Origin

al  

 Lee     Frost    MA

P   

Wav

elet   

Machine 

Learning   



Maritime 
ENL 14.2 20.8 18.3 40.4 31.8 

Rural ENL 9.79 13.2 12.1 19.0 16.6 

 

4               Discussion/Analysis 

According to the metrics for simulated noise in Table 3, the Lee filter outperformed all other 

filters by a significant margin for Urban images. While the Lee filter suppressed speckle, it did 

so while blurring the image, which was not ideal when the urban environment consisted of 

densely packed buildings with edges that should be preserved. However, upon visual inspection, 

it was found that due to the Lee filter’s simple formula, it applied the least amount of blurring, 

allowing it to preserve the most amount of similarity where other filters overcompensated. 

 

For the maritime and rural categories with simulated noise, SAR-CNN had performed relatively 

well, but did not preserve image similarity (SSIM) as well as its counterparts. Lee on the other 

hand had poor metrics but preserved image similarity better, possibly due to the greater 

proportion of homogenous regions like the farmland and water that Lee is better suited for. 

 

The wavelet filter was one of the worst performing, often blurring out the images entirely. This 

can be attributed to the relatively small size of the images used (500×500 pixels), resulting in 

fewer coefficients after decomposition. Internal testing showed that the wavelet filter performs 

significantly better when given input images with larger dimensions. On the contrary, it is 

actually the best when tested on the real data in terms of ENL. This is because it tends to darken 

the image, lowering the standard deviation of the pixels in the image and resulting in a lower 

ENL. This is also the reason why it has the highest ENL in simulated data too. 

 

5               Conclusion 

In conclusion, we recommend the Lee filter for urban terrain and the ML filter, trained only on 

gamma-distributed noise for maritime and rural terrain based on the simulated data. The results 

from real data are inconclusive because we could only use ENL and the wavelet filter was much 

better at that metric than the other filters. Not counting the wavelet filter, machine learning also 

wins for all terrains. It must be noted that our knowledge of the simulated noise gives the ML 

filter a slight advantage over the rest, which would not exist in a real scenario. 

 

As a further extension to our project, we can hypothesise that different landscapes would not 

follow the same noise distribution as each other due to differing surface roughness and dielectric 

constant as it affects how much signal penetrates into the medium, and how much of the energy 

gets lost to the medium through absorption [2]. Using a SAR dataset that contains both the 

Multi-Look image and its constituent Single-Look complex images, we can consider the former 

to be the “clean” image and the latter to be “noisy”. Along with this, we can try to find the noise 



distribution of the single-look complex images by comparing it with the multi-look images and 

using an additive and multiplicative noise model like so: 

𝑁𝑜𝑖𝑠𝑦 =  𝐶𝑙𝑒𝑎𝑛 ∗  𝑀𝑁𝑜𝑖𝑠𝑒 +  𝐴𝑁𝑜𝑖𝑠𝑒 where MNoise and ANoise are the multiplicative and 

additive noise respectively and ANoise is roughly constant 
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