

DATA-DRIVEN DRONES: AN ANALYSIS OF LARGE LANGUAGE

MODELS IN REINFORCEMENT LEARNING FOR DRONES
Ng Shi Qing Eugenia1, Vera Ong Liwen2, Kuan Qi Heng Benson³

¹River Valley High School, 6 Boon Lay Avenue, Singapore 649961

²Raffles Institution (Junior College), 1 Raffles Institution Lane, Singapore 575954

³DSO National Laboratories, 12 Science Park Drive, Singapore 118225

1. Introduction

With Artificial Intelligence (AI) being such an integral part of modern technological

advancements, many have applied it onto drone navigation systems using deep learning. One

of these branches in particular, Reinforcement Learning (RL), involves an agent learning to

make decisions by interacting with an environment. With RL, the environment that an agent is

trained in is usually a simulator that allows for numerous instances of training without incurring

high cost. Through the optimisation of RL models for drone navigation, drones used for

surveillance, pursuit, and otherwise can be trained to perform complex tasks with an accuracy

that is not achievable by traditional approaches. However, one of the challenges of RL is the

crafting of the rewards functions that the agent uses to improve its sequence of decision

making. In this project, the usage of Large Language Model (LLM) is being explored to help

improve on the RL model’s rewards function that is usually crafted manually by hand. In

summary, this project aims to investigate the potential of using LLMs in RL drone models for

simple navigation.

2. Literature Review

2.1 Autonomy in Drone Navigation

There have been many advancements in the fields of AI and drone development in recent years,

which includes the use of deep learning to optimise drone navigation. By utilising AI, drones

account for its surroundings in enclosed environments by detecting objects to clearly map out

its environment. This is important in other implementations like navigation in enclosed spaces

autonomously (i.e. without the need for human involvement), collision avoidance, and

automatic takeoff and landing. Other uses of AI in drones include the optimisation of

trajectories and paths in foreign environments, distinguishing environments based on

geographical features, and planning three-dimensional, non-planar movement (Lee et al.,

2021). With drones increasing in popularity over the past decade, firms have invested efforts

into AI implementations, with a notable example of Near-Earth Autonomy and National

Aeronautics and Space Administration’s (NASA) breakthroughs in self-piloted unmanned

drones and autonomous systems, that have largely reduced the reliance on Global Positioning

Systems (GPS) for drone navigation (NASA, 2020).

2.2 Reinforcement Learning (RL)

RL is a branch of deep learning that involves a series of decisions based on exploration and

exploitation by the agent, where “correct” actions, which brings the agent a step closer to

achieving its goals, are rewarded and “incorrect” actions, which brings the agent a step further

to achieving its goals, are penalised. By interacting with the given environment, the agent can

recognise “correct” and “incorrect” actions through the rewards gained from the rewards

functions, and thereafter continue choosing to act on the sequences of actions that provide the

greatest overall reward and minimise overall penalties. Such rewards would act as

reinforcement for the agent to approach optimal behaviour. (Kaelbling, 1996).

To speed up RL model training, episodic learning models were used, where agents leverage on

past observations and actions to further learn, rather than starting from scratch each time. This

“learn by learnt” approach allows for greater RL model optimisation due to a more efficient

trial-and-error approach (Botvinick et al., 2019). However, another approach that can be taken

to optimise RL models would be to optimise the rewards function dictating the behaviour of

agents. Much of today’s efforts to maximise the efficiency of such functions are done manually

through fine-tuning.

2.3 Reinforcement Learning in Real-World Contexts and Drone Navigation

As RL is most advantageous in contexts where the agent must take in inputs from its external

environment such as feedback and sensory inputs and requires great amounts of data to be

implemented effectively (Haque et al., 2023), applying RL into today’s drone navigation

developments can allow drones to be adapted to many functions.

The use of autonomous high-speed drones includes search and rescue in an unknown

environment. Using sensors like the camera, the drone will be able to visualise the environment

in the form of a map that allows it to plan safe trajectories to a desired goal state. (Karatzas et

al., 2022) The RL process for drone navigation can be illustrated by the flowchart below

(AlMahamid et al, n.d.):

Figure 2.1 Flowchart visualising RL system

Such technology has been used for drone racing as well, where RL modelling is used to plan

minimum-time trajectory and paths from waypoint to waypoint while ensuring obstacle

avoidance in a randomised map. These trajectories are often high-velocity and aggressive

movements that accurately and precisely utilise actuators to navigate sharp turns and messy

terrains, which pushes drone controls to its maximum efficiency (Song et al., 2021). Even in

situations where a gentler trajectory is required, RL can allow drones to follow paths or

landmarks through object distinction to navigate areas (Jacob et al., 2022).

Furthermore, RL can be used to program surveillance or pursuit drones that are designed to

follow a specified moving object, such as a vehicle or person, through a system similar to

Figure 2.1 but with a reward function centred around distance from target and orientation of

drone compared to bearing of target (Darwish et al., 2021). This function, when combined with

high speed movement in random terrain mentioned above, will yield a drone that is efficient

and able to pursue and survey autonomously.

Lastly, RL is integral to delivery drones, where safe and stable flight regardless of environment

is essential to its function. By using RL to path find and determine the safest or fastest route to

its destination, as well as to ensure stable flight, the drone will then be able to deliver cargo

efficiently and effectively (Munoz et al., 2019).

However, as a start to the research into the effectiveness of implementing LLMs into drones,

we decided to just train it to hover rather than getting it to avoid obstacles and plan its path.

3. Methodology

3.1 Repository Implementation and Modifications on Linux OS

With the pre-existing gym-pybullet-drones repository (utiasDSL, 2023), the first step would be

to ensure that the code environment is correctly implemented and tested before any further

modifications.

First, the repository was downloaded onto an Ubuntu laptop running Linux OS, as python

libraries such as gymnasium, as well as high-level coding, are best supported on Linux. Once

all setups had been completed, the original source code was ensured to run as indicated on the

repository notes before further modifying the code as will be explained below.

3.1.1 Continuous Learning

For the model to build on its past training and restore its training progress each time the code

was run, continuous learning was implemented. We did this by saving the best model into a zip

file each time the training was finished and loading the parameters into the model before

training it during the next run of the code. Continuous learning allows us to set shorter training

iterations to better visualise the progress of the drone. We can then more accurately determine

when the drone has been sufficiently trained to reach the target position. The specific number

of training iterations during each run of the code will be further discussed in section 3.3.

3.2 Modifying of Reward Function

For the human-crafted rewards function, we decided to implement a simple formula which

penalises the model based on its euclidean distance away from the target position:

𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑚𝑎𝑥⁡(0, 2𝑧 − 𝑑4)

where z is the Euclidean distance between target and origin,

d is the Euclidean distance between current coordinates and target coordinates

The further it is from the target position, the higher the penalty. The euclidean distance for two

points in the 3-dimensional environment was calculated using the following formula (Tabak,

2008):

where d is the Euclidean distance,

p is target position,

q is the current position,

n is the dimension of the coordinate

By rewarding the model when its euclidean distance from its target position is low and

penalising the model when its euclidean distance from its target position is high the movement

of the model becomes smoother and less abrupt after multiple iterations of training. The

formula allows it to be used for different target coordinates and the Euclidean distance between

current coordinates and target coordinates to the fourth power increases the rewards given

exponentially as the drone gets closer to the target coordinates.

3.3 Training Models in Iterations

To provide an initial estimate of how many iterations would be sufficient to train a model in

general, a large, randomised number of timesteps were used to train the model with a given

target position of (0,0,1). Through numerical analysis, we determined that 5x105 timesteps is

generally sufficient to train the model to reach this target position. If too little timesteps like

1x103 were used, there would be barely any improvements observed. Therefore, all models in

this project were trained in 5x104 timestep iterations, until the drone was sufficiently trained,

to reduce any chances of overfitting or overtraining, and visualise the training progress between

iterations. This also allows us to compare between models by comparing the number of

timesteps required to train the drone to navigate to a given position, efficiently comparing the

effectiveness of any modifications.

3.4 Implementation of OpenAI’s ChatGPT API

To implement the LLM-crafted rewards function, we integrated OpenAI’s GPT model into the

code itself.

3.4.1 Version of the GPT Model

The version of the GPT Model we used was GPT-4, the latest model in the GPT series. We

chose this model as it was the latest and most advanced model currently. It is more creative

and able to handle much more nuanced instructions than GPT-3.5, which we felt would

increase the reliability and accuracy of the reward function crafted by it. Furthermore, GPT-4

performed better as compared to the current State-of-the-Art (SOTA) model and GPT3.5 model

when evaluated using HumanEval (OpenAI, 2023), which evaluates code generated by LLMs

(OpenAI, 2021). Our project is reliant on the rewards function generated by the LLM and

therefore we felt that the increase in accuracy of the generation of code by GPT-4 could help

us yield better results compared to GPT-3.5 and therefore decided to use this model.

3.4.2 Memory of conversation

Unfortunately, the GPT model does not retain past conversation history and in turn, the context

from the previous queries and responses.

However, the GPT model does take in a parameter called ‘messages’ where we can input in

past queries and outputs as contexts for its future outputs. Therefore, each past query and

response was saved into a list of dictionaries and parsed through each time the GPT model was

being used (OpenAI, n.d.). This allows the model to access its past reward functions and modify

the parts of it that were not successful based on the query from the most recent evaluation.

3 4.3 Modification of context, input and output of the LLM

To increase the autonomy of the feedback input and implementation of the LLM-crafted

rewards function, we had to give the model context to modify its output given our input.

For the context, we added the code for the environment’s action and observation space so that

the model can better understand how the rewards function affects the control of the drone. We

also gave it specific instructions on what the format of the model’s output should be. For

example, to get the model to generate a rewards function that could be immediately executed,

the context we provided was to “generate a python code (not in a code block) with no other

commentary. create a function called generate_rewards that can only take in 6 positional

arguments, x, y, z, targetx, targety, targetz”.

To implement the LLM crafted reward function, we queried in the final distance the drone was

at the end of its final evaluation. The LLM outputs an updated version of its rewards function

based on the distance away from the target position the drone was during the last evaluation.

This output will then be saved into a text file and executed using the exec() function whenever

the environment’s reward function is called. After each run of the code, the distance will be

calculated and will be queried into the LLM automatically

4. Results

4.1 Human-crafted Rewards Function

Figure 4.1 Drone hovering at (0,0,1) in the simulation

Using the rewards function mentioned in section 3.2, the drone was able to achieve stable flight

to the coordinates (0,0,1) within 2x105 timesteps. The drone was able to achieve stable flight

to the coordinates (0,0,2) within 3x105 timesteps. Figure 4.1 shows the drone hovering stably

after training. The graphs of the drone’s dynamics during the final evaluation. Annex A and B

shows the graphs of the drone’s dynamics during the final evaluation and the mean rewards

throughout the training period for coordinates (0,0,1) and (0,0,2) respectively.

Other hand-crafted rewards functions that were tested included exponentially increasing

rewards as the distance between target and drone decreases, as well as rewarding when the

drone is hovering at a steady height and penalising when the drone overflies past the target

position to streamline flight. Though it had reduced training timesteps slightly, the overall

complexity of the rewards function paired with the negligible change in results made this

modification unimportant to the overall rewards function. Therefore, the original function was

restored for use in the model.

4.2 LLM-crafted Rewards Function

Figure 4.2 Drone hovering at (0,0,1) in the simulation

The drone trained using the LLM-crafted rewards function managed to hover stably at the

target position of (0,0,1) after 1x105 timesteps and could hover stably at the target position of

(0,0,2) after 2x105 timesteps. Annex C and D shows the graphs of the drone’s dynamics during

the final evaluation and the mean rewards throughout the training period for the target

coordinates (0,0,1) and (0,0,2) respectively.

5. Discussion

5.1 Potential of LLMs

Fine tuning and adjusting the rewards function could be extremely time-consuming, especially

when the effectiveness of the training in RL is so heavily dependent on it. However, if we were

to use LLMs to automate this process, we can not only save time but can also reduce the human

biases that come with human-crafted reward functions. Furthermore, LLMs can better

understand the semantics of the query and can output a reward function that can be used to

encourage or reduce certain behaviours that might arise from a normal human-crafted reward

function. Its effectiveness can be seen in our results where the LLM-crafted rewards function

managed to achieve a higher accuracy and had a nearer final coordinates to our target

coordinate as compared to the hand-crafted rewards function.

5.2 Reinforcement Learning with Human Feedback (RLHF)

Figure 5.1 Graphs of drone’s dynamics during final evaluation with target position (0,0,2)

Figure 5.2 Graph of mean rewards during training

Other research projects such as Eureka (Eureka Research, 2023) have integrated human

feedback into their LLM inputs to improve the efficacy of the reinforcement learning training

and therefore we wanted to test if the usage of RLHF would benefit the training of drones. To

test this, we queried the human feedback in words after the end of each 5x104 interval for the

LLM to take into consideration before modifying its rewards function. The training timesteps

to train the model to hover stably at the target position of (0,0,2) was further shortened to 105.

Figure 5.1 shows the x, y and z-coordinates of the drone and the z-coordinate is relatively stable

throughout. Figure 5.2 shows the increasing trend of the mean rewards after its training.

5.3 Evaluation of Rewards Functions

Based on the results seen in section 4, using LLMs to craft and tweak the rewards functions

can evidently increase the efficiency and effectiveness of the model’s training. The timesteps

needed to train the model to hover at (0,0,1) decreased from 2x105 to 1x105 using the human-

crafted and LLM-crafted rewards function respectively, which is a 50% decrease in the time

taken. The timesteps needed to train the model to hover at (0,0,2) also decreased from 3x105 to

2x105 using the human-crafted and LLM-crafted rewards function respectively, which is a 33%

decrease in the time taken. However, as seen in section 5.2, the drone trained using a

combination of LLM-crafted rewards function and RLHF used the least number of timesteps,

1x105, to train the drone to hover stably.

5.4 Limitations

The integration of LLMs into the RL training that we tested only showed results for relatively

simple tasks such as the hovering of a drone. For more complex tasks such as object avoidance

or zero-shot drone flying and hovering, the integration of LLMs may not be as effective and

may not have impactful changes to the time taken to train the model.

6. Future Improvements

Improving on this project in the future would entail integrating LLMs into an end to end RL

pipeline which allows for a drone to output control commands directly from sensory inputs that

avoids obstacles when moving to a desired target goal as mentioned in section 5.4. Beyond

that, LLM training has potential to branch into real-life drones, through implementing LLM-

generated reward functions into real-life waypoint navigation and collision avoidance for use

in different contexts as previously mentioned.

7. Conclusion

Through the analysis of the use of LLM to optimise rewards functions, it is concluded that

LLM greatly reduces training required for RL drone navigation models to reach its intended

target coordinates and has significant potential to be applied onto real-life drone platforms.

8. References

Autonomous Drone Racing with Deep Reinforcement Learning - Researchgate. (n.d.-a).

https://www.researchgate.net/publication/350104776_Autonomous_Drone_Racing_with_Dee

p_Reinforcement_Learning

Autonomous Unmanned Aerial Vehicle Navigation using Reinforcement Learning: A

Systematic Review - arxiv.org. (n.d.-b). https://arxiv.org/pdf/2208.12328

Botvinick, M., Ritter, S., Wang, J. X., Kurth-Nelson, Z., Blundell, C., & Hassabis, D. (2019,

April 16). Reinforcement learning, fast and slow. Trends in Cognitive Sciences.

https://www.sciencedirect.com/science/article/pii/S1364661319300610

Drone Navigation and Target Interception Using Deep Reinforcement Learning: A Cascade

Reward Approach - IEEE xplore. (n.d.-c). https://ieeexplore.ieee.org/document/10323488/

Exploring the benefits of reinforcement learning for autonomous drone navigation and control

(n.d.-d).

https://www.researchgate.net/publication/372987000_Exploring_the_Benefits_of_Reinforce

ment_Learning_for_Autonomous_Drone_Navigation_and_Control

Eureka-Research. (2023). Eureka-Research/Eureka: Official Repository for “eureka: Human-

level reward design via coding large language models.” GitHub. https://github.com/eureka-

research/Eureka

Google. (n.d.). Geometry: The Language of Space and Form. Google Books.

https://books.google.com.sg/books?id=r0HuPiexnYwC&pg=PA150&redir_esc=y#v=onepag

e&q&f=false

GPT base, GPT-3.5 Turbo & GPT-4: What’s the difference? Pluralsight. (n.d.).

https://www.pluralsight.com/resources/blog/data/ai-gpt-models-differences

Jacob, B., Kaushik, A., & Velavan, P. (1970, January 1). Autonomous Navigation of drones

using reinforcement learning. SpringerLink. https://link.springer.com/chapter/10.1007/978-

981-16-7220-0_10

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996, May 1). Reinforcement learning: A

survey. arXiv.org. https://arxiv.org/abs/cs/9605103

Karatzas, A., Karras, A., Karras, C., Giotopoulos, K. C., Oikonomou, K., & Sioutas, S. (1970,

January 1). On Autonomous Drone Navigation using Deep Learning and an intelligent rainbow

DQN agent. SpringerLink. https://link.springer.com/chapter/10.1007/978-3-031-21753-1_14

Lee, T., Mckeever, S., & Courtney, J. (2021, June 17). Flying free: A research overview of

deep learning in drone navigation autonomy. MDPI. https://www.mdpi.com/2504-

446X/5/2/52

Muñoz, G., Barrado, C., Çetin, E., & Salami, E. (2019, September 10). Deep reinforcement

learning for drone delivery. MDPI. https://www.mdpi.com/2504-446X/3/3/72/htm

https://www.researchgate.net/publication/350104776_Autonomous_Drone_Racing_with_Deep_Reinforcement_Learning
https://www.researchgate.net/publication/350104776_Autonomous_Drone_Racing_with_Deep_Reinforcement_Learning
https://arxiv.org/pdf/2208.12328
https://www.sciencedirect.com/science/article/pii/S1364661319300610
https://ieeexplore.ieee.org/document/10323488/
https://www.researchgate.net/publication/372987000_Exploring_the_Benefits_of_Reinforcement_Learning_for_Autonomous_Drone_Navigation_and_Control
https://www.researchgate.net/publication/372987000_Exploring_the_Benefits_of_Reinforcement_Learning_for_Autonomous_Drone_Navigation_and_Control
https://github.com/eureka-research/Eureka
https://github.com/eureka-research/Eureka
https://books.google.com.sg/books?id=r0HuPiexnYwC&pg=PA150&redir_esc=y#v=onepage&q&f=false
https://books.google.com.sg/books?id=r0HuPiexnYwC&pg=PA150&redir_esc=y#v=onepage&q&f=false
https://www.pluralsight.com/resources/blog/data/ai-gpt-models-differences
https://link.springer.com/chapter/10.1007/978-981-16-7220-0_10
https://link.springer.com/chapter/10.1007/978-981-16-7220-0_10
https://arxiv.org/abs/cs/9605103
https://link.springer.com/chapter/10.1007/978-3-031-21753-1_14
https://www.mdpi.com/2504-446X/5/2/52
https://www.mdpi.com/2504-446X/5/2/52
https://www.mdpi.com/2504-446X/3/3/72/htm

NASA. (n.d.). Autonomous drone navigation system ends reliance on GPS. NASA.

https://spinoff.nasa.gov/Spinoff2020/ps_5.html

OpenAI platform. (n.d.-e). https://platform.openai.com/docs/api-reference

OpenAI. (2023, December 19). GPT-4 technical report. arXiv.org.

https://arxiv.org/abs/2303.08774

openai. (2021). Openai/human-eval: Code for the paper “evaluating large language models

trained on code.” GitHub. https://github.com/openai/human-eval

utiasDSL. (n.d.). UTIASDSL/gym-pybullet-drones: Pybullet Gymnasium environments for

single and multi-agent reinforcement learning of Quadcopter Control. GitHub.

https://github.com/utiasDSL/gym-pybullet-drones

https://spinoff.nasa.gov/Spinoff2020/ps_5.html
https://arxiv.org/abs/2303.08774
https://github.com/openai/human-eval
https://github.com/utiasDSL/gym-pybullet-drones

9. Annex

Annex A: Graphs of drone’s dynamics during final evaluation and rewards during

training using a human-crafted rewards function with target position (0,0,1)

Annex B: Graphs of drone’s dynamics during final evaluation and rewards during

training using a human-crafted rewards function with target position (0,0,2)

Annex C: Graphs of drone’s dynamics during final evaluation and rewards during

training using LLM-crafted rewards function with a target position of (0,0,1)

Annex D: Graphs of drone’s dynamics during final evaluation and rewards during

training using LLM-crafter rewards function with target position (0,0,2)

Annex D: Graphs of drone’s dynamics during final evaluation and rewards during

training using an LLM-crafted rewards function with a target position of (0,0,2)

