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1. Introduction 

With Artificial Intelligence (AI) being such an integral part of modern technological 

advancements, many have applied it onto drone navigation systems using deep learning. One 

of these branches in particular, Reinforcement Learning (RL), involves an agent learning to 

make decisions by interacting with an environment. With RL, the environment that an agent is 

trained in is usually a simulator that allows for numerous instances of training without incurring 

high cost. Through the optimisation of RL models for drone navigation, drones used for 

surveillance, pursuit, and otherwise can be trained to perform complex tasks with an accuracy 

that is not achievable by traditional approaches. However, one of the challenges of RL is the 

crafting of the rewards functions that the agent uses to improve its sequence of decision 

making. In this project, the usage of Large Language Model (LLM) is being explored to help 

improve on the RL model’s rewards function that is usually crafted manually by hand. In 

summary, this project aims to investigate the potential of using LLMs in RL drone models for 

simple navigation.  

 

2. Literature Review 

2.1 Autonomy in Drone Navigation  

There have been many advancements in the fields of AI and drone development in recent years, 

which includes the use of deep learning to optimise drone navigation. By utilising AI, drones 

account for its surroundings in enclosed environments by detecting objects to clearly map out 

its environment. This is important in other implementations like navigation in enclosed spaces 

autonomously (i.e. without the need for human involvement), collision avoidance, and 

automatic takeoff and landing. Other uses of AI in drones include the optimisation of 

trajectories and paths in foreign environments, distinguishing environments based on 

geographical features, and planning three-dimensional, non-planar movement (Lee et al., 

2021). With drones increasing in popularity over the past decade, firms have invested efforts 

into AI implementations, with a notable example of Near-Earth Autonomy and National 

Aeronautics and Space Administration’s (NASA) breakthroughs in self-piloted unmanned 

drones and autonomous systems, that have largely reduced the reliance on Global Positioning 

Systems (GPS) for drone navigation (NASA, 2020).  

 

2.2 Reinforcement Learning (RL) 

RL is a branch of deep learning that involves a series of decisions based on exploration and 

exploitation by the agent, where “correct” actions, which brings the agent a step closer to 

achieving its goals, are rewarded and “incorrect” actions, which brings the agent a step further 

to achieving its goals, are penalised. By interacting with the given environment, the agent can 

recognise “correct” and “incorrect” actions through the rewards gained from the rewards 

functions, and thereafter continue choosing to act on the sequences of actions that provide the 

greatest overall reward and minimise overall penalties. Such rewards would act as 

reinforcement for the agent to approach optimal behaviour. (Kaelbling, 1996).  

 

To speed up RL model training, episodic learning models were used, where agents leverage on 

past observations and actions to further learn, rather than starting from scratch each time. This 



 

 

   

 

“learn by learnt” approach allows for greater RL model optimisation due to a more efficient 

trial-and-error approach (Botvinick et al., 2019). However, another approach that can be taken 

to optimise RL models would be to optimise the rewards function dictating the behaviour of 

agents. Much of today’s efforts to maximise the efficiency of such functions are done manually 

through fine-tuning.  

 

2.3 Reinforcement Learning in Real-World Contexts and Drone Navigation 

As RL is most advantageous in contexts where the agent must take in inputs from its external 

environment such as feedback and sensory inputs and requires great amounts of data to be 

implemented effectively (Haque et al., 2023), applying RL into today’s drone navigation 

developments can allow drones to be adapted to many functions. 

 

The use of autonomous high-speed drones includes search and rescue in an unknown 

environment.  Using sensors like the camera, the drone will be able to visualise the environment 

in the form of a map that allows it to plan safe trajectories to a desired goal state. (Karatzas et 

al., 2022)  The RL process for drone navigation can be illustrated by the flowchart below 

(AlMahamid et al, n.d.): 

 

 
Figure 2.1 Flowchart visualising RL system 

 

Such technology has been used for drone racing as well, where RL modelling is used to plan 

minimum-time trajectory and paths from waypoint to waypoint while ensuring obstacle 

avoidance in a randomised map. These trajectories are often high-velocity and aggressive 

movements that accurately and precisely utilise actuators to navigate sharp turns and messy 

terrains, which pushes drone controls to its maximum efficiency (Song et al., 2021). Even in 

situations where a gentler trajectory is required, RL can allow drones to follow paths or 

landmarks through object distinction to navigate areas (Jacob et al., 2022).  

 

Furthermore, RL can be used to program surveillance or pursuit drones that are designed to 

follow a specified moving object, such as a vehicle or person, through a system similar to 

Figure 2.1 but with a reward function centred around distance from target and orientation of 

drone compared to bearing of target (Darwish et al., 2021). This function, when combined with 

high speed movement in random terrain mentioned above, will yield a drone that is efficient 

and able to pursue and survey autonomously. 

 

Lastly, RL is integral to delivery drones, where safe and stable flight regardless of environment 

is essential to its function. By using RL to path find and determine the safest or fastest route to 

its destination, as well as to ensure stable flight, the drone will then be able to deliver cargo 

efficiently and effectively (Munoz et al., 2019). 

 

However, as a start to the research into the effectiveness of implementing LLMs into drones, 

we decided to just train it to hover rather than getting it to avoid obstacles and plan its path.   



 

 

   

 

3. Methodology 

3.1 Repository Implementation and Modifications on Linux OS 

With the pre-existing gym-pybullet-drones repository (utiasDSL, 2023), the first step would be 

to ensure that the code environment is correctly implemented and tested before any further 

modifications.  

 

First, the repository was downloaded onto an Ubuntu laptop running Linux OS, as python 

libraries such as gymnasium, as well as high-level coding, are best supported on Linux. Once 

all setups had been completed, the original source code was ensured to run as indicated on the 

repository notes before further modifying the code as will be explained below. 

 

3.1.1 Continuous Learning 

For the model to build on its past training and restore its training progress each time the code 

was run, continuous learning was implemented. We did this by saving the best model into a zip 

file each time the training was finished and loading the parameters into the model before 

training it during the next run of the code. Continuous learning allows us to set shorter training 

iterations to better visualise the progress of the drone. We can then more accurately determine 

when the drone has been sufficiently trained to reach the target position. The specific number 

of training iterations during each run of the code will be further discussed in section 3.3. 

 

3.2 Modifying of Reward Function 

For the human-crafted rewards function, we decided to implement a simple formula which 

penalises the model based on its euclidean distance away from the target position: 

𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑚𝑎𝑥⁡(0, 2𝑧 − 𝑑4) 

where z is the Euclidean distance between target and origin, 

d is the Euclidean distance between current coordinates and target coordinates 

 

The further it is from the target position, the higher the penalty. The euclidean distance for two 

points in the 3-dimensional environment was calculated using the following formula (Tabak, 

2008): 

  
where d is the Euclidean distance, 

p is target position, 

q is the current position,  

n is the dimension of the coordinate 

By rewarding the model when its euclidean distance from its target position is low and 

penalising the model when its euclidean distance from its target position is high the movement 

of the model becomes smoother and less abrupt after multiple iterations of training. The 

formula allows it to be used for different target coordinates and the Euclidean distance between 

current coordinates and target coordinates to the fourth power increases the rewards given 

exponentially as the drone gets closer to the target coordinates.  

 

3.3 Training Models in Iterations 

To provide an initial estimate of how many iterations would be sufficient to train a model in 

general, a large, randomised number of timesteps were used to train the model with a given 

target position of (0,0,1). Through numerical analysis, we determined that 5x105 timesteps is 



 

 

   

 

generally sufficient to train the model to reach this target position. If too little timesteps like 

1x103 were used, there would be barely any improvements observed. Therefore, all models in 

this project were trained in 5x104 timestep iterations, until the drone was sufficiently trained, 

to reduce any chances of overfitting or overtraining, and visualise the training progress between 

iterations. This also allows us to compare between models by comparing the number of 

timesteps required to train the drone to navigate to a given position, efficiently comparing the 

effectiveness of any modifications. 

 

3.4 Implementation of OpenAI’s ChatGPT API 

To implement the LLM-crafted rewards function, we integrated OpenAI’s GPT model into the 

code itself. 

 

3.4.1 Version of the GPT Model 

The version of the GPT Model we used was GPT-4, the latest model in the GPT series. We 

chose this model as it was the latest and most advanced model currently. It is more creative 

and able to handle much more nuanced instructions than GPT-3.5, which we felt would 

increase the reliability and accuracy of the reward function crafted by it. Furthermore, GPT-4 

performed better as compared to the current State-of-the-Art (SOTA) model and GPT3.5 model 

when evaluated using HumanEval (OpenAI, 2023), which evaluates code generated by LLMs 

(OpenAI, 2021). Our project is reliant on the rewards function generated by the LLM and 

therefore we felt that the increase in accuracy of the generation of code by GPT-4 could help 

us yield better results compared to GPT-3.5 and therefore decided to use this model.  

 

3.4.2 Memory of conversation 

Unfortunately, the GPT model does not retain past conversation history and in turn, the context 

from the previous queries and responses.  

 

However, the GPT model does take in a parameter called ‘messages’ where we can input in 

past queries and outputs as contexts for its future outputs. Therefore, each past query and 

response was saved into a list of dictionaries and parsed through each time the GPT model was 

being used (OpenAI, n.d.). This allows the model to access its past reward functions and modify 

the parts of it that were not successful based on the query from the most recent evaluation. 

 

3 4.3 Modification of context, input and output of the LLM 

To increase the autonomy of the feedback input and implementation of the LLM-crafted 

rewards function, we had to give the model context to modify its output given our input.  

 

For the context, we added the code for the environment’s action and observation space so that 

the model can better understand how the rewards function affects the control of the drone. We 

also gave it specific instructions on what the format of the model’s output should be. For 

example, to get the model to generate a rewards function that could be immediately executed, 

the context we provided was to “generate a python code (not in a code block) with no other 

commentary. create a function called generate_rewards that can only take in 6 positional 

arguments, x, y, z, targetx, targety, targetz”. 

 

To implement the LLM crafted reward function, we queried in the final distance the drone was 

at the end of its final evaluation. The LLM outputs an updated version of its rewards function 

based on the distance away from the target position the drone was during the last evaluation. 

This output will then be saved into a text file and executed using the exec() function whenever 



 

 

   

 

the environment’s reward function is called. After each run of the code, the distance will be 

calculated and will be queried into the LLM automatically 

 

4. Results 

4.1 Human-crafted Rewards Function 

 

 

Figure 4.1 Drone hovering at (0,0,1) in the simulation 

 

Using the rewards function mentioned in section 3.2, the drone was able to achieve stable flight 

to the coordinates (0,0,1) within 2x105 timesteps. The drone was able to achieve stable flight 

to the coordinates (0,0,2) within 3x105 timesteps. Figure 4.1 shows the drone hovering stably 

after training. The graphs of the drone’s dynamics during the final evaluation. Annex A and B 

shows the graphs of the drone’s dynamics during the final evaluation and the mean rewards 

throughout the training period for coordinates (0,0,1) and (0,0,2) respectively. 

 

Other hand-crafted rewards functions that were tested included exponentially increasing 

rewards as the distance between target and drone decreases, as well as rewarding when the 

drone is hovering at a steady height and penalising when the drone overflies past the target 

position to streamline flight. Though it had reduced training timesteps slightly, the overall 

complexity of the rewards function paired with the negligible change in results made this 

modification unimportant to the overall rewards function. Therefore, the original function was 

restored for use in the model. 

 

  



 

 

   

 

4.2 LLM-crafted Rewards Function 

 

 

Figure 4.2 Drone hovering at (0,0,1) in the simulation 

 

The drone trained using the LLM-crafted rewards function managed to hover stably at the 

target position of (0,0,1) after 1x105 timesteps and could hover stably at the target position of 

(0,0,2) after 2x105 timesteps. Annex C and D shows the graphs of the drone’s dynamics during 

the final evaluation and the mean rewards throughout the training period for the target 

coordinates (0,0,1) and (0,0,2) respectively. 

 

5. Discussion 

5.1 Potential of LLMs 

Fine tuning and adjusting the rewards function could be extremely time-consuming, especially 

when the effectiveness of the training in RL is so heavily dependent on it. However, if we were 

to use LLMs to automate this process, we can not only save time but can also reduce the human 

biases that come with human-crafted reward functions. Furthermore, LLMs can better 

understand the semantics of the query and can output a reward function that can be used to 

encourage or reduce certain behaviours that might arise from a normal human-crafted reward 

function. Its effectiveness can be seen in our results where the LLM-crafted rewards function 

managed to achieve a higher accuracy and had a nearer final coordinates to our target 

coordinate as compared to the hand-crafted rewards function.  

 

  



 

 

   

 

5.2 Reinforcement Learning with Human Feedback (RLHF) 

 

 

Figure 5.1 Graphs of drone’s dynamics during final evaluation with target position (0,0,2) 

 

 

Figure 5.2 Graph of mean rewards during training 

 

Other research projects such as Eureka (Eureka Research, 2023) have integrated human 

feedback into their LLM inputs to improve the efficacy of the reinforcement learning training 

and therefore we wanted to test if the usage of RLHF would benefit the training of drones. To 

test this, we queried the human feedback in words after the end of each 5x104 interval for the 

LLM to take into consideration before modifying its rewards function. The training timesteps 

to train the model to hover stably at the target position of (0,0,2) was further shortened to 105. 

Figure 5.1 shows the x, y and z-coordinates of the drone and the z-coordinate is relatively stable 

throughout. Figure 5.2 shows the increasing trend of the mean rewards after its training. 

 

  



 

 

   

 

5.3 Evaluation of Rewards Functions 

Based on the results seen in section 4, using LLMs to craft and tweak the rewards functions 

can evidently increase the efficiency and effectiveness of the model’s training. The timesteps 

needed to train the model to hover at (0,0,1) decreased from 2x105 to 1x105 using the human-

crafted and LLM-crafted rewards function respectively, which is a 50% decrease in the time 

taken. The timesteps needed to train the model to hover at (0,0,2) also decreased from 3x105 to 

2x105 using the human-crafted and LLM-crafted rewards function respectively, which is a 33% 

decrease in the time taken. However, as seen in section 5.2, the drone trained using a 

combination of LLM-crafted rewards function and RLHF used the least number of timesteps, 

1x105, to train the drone to hover stably.  

 

5.4 Limitations 

The integration of LLMs into the RL training that we tested only showed results for relatively 

simple tasks such as the hovering of a drone. For more complex tasks such as object avoidance 

or zero-shot drone flying and hovering, the integration of LLMs may not be as effective and 

may not have impactful changes to the time taken to train the model. 

 

6. Future Improvements 

Improving on this project in the future would entail integrating LLMs into an end to end RL 

pipeline which allows for a drone to output control commands directly from sensory inputs that 

avoids obstacles when moving to a desired target goal as mentioned in section 5.4. Beyond 

that, LLM training has potential to branch into real-life drones, through implementing LLM-

generated reward functions into real-life waypoint navigation and collision avoidance for use 

in different contexts as previously mentioned.  

 

7. Conclusion 

Through the analysis of the use of LLM to optimise rewards functions, it is concluded that 

LLM greatly reduces training required for RL drone navigation models to reach its intended 

target coordinates and has significant potential to be applied onto real-life drone platforms. 
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9. Annex 

 



 

 

   

 

Annex A: Graphs of drone’s dynamics during final evaluation and rewards during 

training using a human-crafted rewards function with target position (0,0,1) 



 

 

   

 

Annex B: Graphs of drone’s dynamics during final evaluation and rewards during 

training using a human-crafted rewards function with target position (0,0,2) 

  



 

 

   

 

Annex C: Graphs of drone’s dynamics during final evaluation and rewards during 

training using LLM-crafted rewards function with a target position of (0,0,1) 

 



 

 

   

 

Annex D: Graphs of drone’s dynamics during final evaluation and rewards during 



 

 

   

 

training using LLM-crafter rewards function with target position (0,0,2) 

 

Annex D: Graphs of drone’s dynamics during final evaluation and rewards during 

training using an LLM-crafted rewards function with a target position of (0,0,2) 


