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Introduction 

Boiling point estimation is of great importance in finding out a chemical's vapor pressure and 

hence toxicity, for modelling the distribution and fate of chemicals in the environment [1], and 

for the basis of design and simulation of chemical, biochemical and environmental systems [2]. 

Unfortunately, experimental boiling point data cannot always be found in literature. Since 

measurement is expensive and time consuming, estimation methods are generally of great value.  

However, there are three main issues with current boiling point estimation: 1. Current boiling 

point estimation requires knowledge of the structure of a compound. 2. It requires a pure sample 

of the compound, which is not always available. 3. To derive the structure of a compound, 

specialized apparatus are required to analyze the compound, and this can take up to half an hour. 

In situations where time is of utmost importance, such methods of boiling point estimation prove 

unfeasible. Computational techniques offer a realistic and advantageous alternative. Existing 

work has carried out research on predicting boiling points from molecular structures, but none 

directly from spectra, which can be taken quickly and effectively. Hence, a model that can 

predict boiling points from infrared (IR) spectra is able to mitigate the three issues listed above.  

Related Work 

Current models for the prediction of boiling points utilize chemical information such as 

molecular descriptors, which require knowledge of the structure of a compound. An example is 

the OPERA (OPEn (quantitative) structure-activity Relationship Application) model for boiling 

point proposed by Mansouri et al. [3]. It provides a suite of Quantitative Structure Activity 

Relationship (QSAR) models to predict physicochemical properties and environmental fate of 

organic chemicals based on molecular descriptors generated using the PaDEL software [4]. This 

method has achieved a remarkable accuracy of 22.08 RMSE on the test dataset, but knowledge 

on the exact structure of the compound is required, and it is not always available. 



  
 

Hence, in this work, we focus on the construction of a model which predicts boiling points given 

only the IR spectra data from molecules and compare it to a baseline model which takes in actual 

structures, from which molecular descriptors are generated as input to the model. 

Methodology 

Data Preparation  

The first dataset consists of molecular descriptors of 4077 chemicals as well as their boiling 

points obtained from the US Environmental Protection Agency. All null values in descriptors 

were replaced with the median value of that descriptor across all the chemicals. The molecular 

descriptors were then transformed such that each descriptor had a normal distribution with a 

mean of 0 and standard deviation of 1 across all molecules according to equation 1.  

𝑍 =
𝑥−𝑢

𝑠
                                                                            (1) 

Where: 

• z is the standardized value. 

• x is the original value. 

• u is the mean of the feature. 

• s is the standard deviation of the feature. 

The second dataset contains the CAS, SMILES, name and boiling point of 11762 chemicals. The 

CAS, SMILES and boiling point were extracted from the dataset using regular expressions.  

The third dataset consists of IR spectra data from the NIST chemistry webbook. There are 4211 

files of IR spectra data, 398 of which are of solids, 1195 of which are liquids, and 2618 of which 

are of gases. In this model, we focus on predicting the boiling points using IR spectra of gaseous 

chemicals only, as the IR spectra of gaseous chemicals have the most well-defined peaks, which 

makes it easier for the model to predict, and there are far more gaseous chemical IR data than the 

other two states.  

Since the boiling points are not specified in many of the files for IR spectra, chemicals present in 

both the third dataset with IR spectra and the second dataset with boiling points were extracted. 

There were 112 chemicals with more than one IR spectra file. Files that did not have any 



  
 

contamination were preferentially chosen, and if either all the files had contamination or all the 

files had no contamination, files with a resolution of 2 were preferred, as most files for non-

repeated chemicals used a resolution of 2, and a smaller resolution of 2 contains more detailed 

information as compared to other higher resolutions of 4 and 6. The total number of chemicals in 

the end was 1961. 

In IR spectra data, the X values represent the wavelength or wavenumber at which the 

measurement is taken, and the Y values represent the intensity of frequencies absorbed or 

transmitted. In the dataset, the X values were either expressed as wavelengths in 𝑚𝑚 or 

expressed as wavenumbers in 𝑐𝑚−1while the Y values were in either absorbance or 

transmittance. The X factor and Y factors are scaling factors that are applied to the X and Y 

values respectively. The data was scaled such that the data is no longer scaled by the X and Y 

factors, and X units and Y units were standardized as 𝑐𝑚−1 and absorbance respectively.  

Y values in terms of transmittance were converted to absorbance according to equation 2.  

𝐴 = 𝑙𝑜𝑔10 (
1

𝑇
)                                                                       (2) 

Where:  

• A is the absorbance 

• T is the transmittance 

X values in wavelength (𝑚𝑚) were converted to wavenumbers (𝑐𝑚−1) according to equation 3.  

ῡ =
1

𝜆
                                                                                   (3) 

Where:  

• ῡ is the wavenumber in 𝑐𝑚−1 

• 𝜆 is the wavelength in 𝑚𝑚 

The y values were then interpolated for every x in the range 700 – 3570, with an interval of 2cm-

1, using cubic spline interpolation.  



  
 

Suppose that distinct nodes 𝑡0<𝑡1<⋯<𝑡𝑛 ) and data 𝑦0,…,𝑦𝑛 are given. . For any 𝑘=1,…,𝑛, the 

spline 𝑆(𝑥) on the interval [𝑡𝑘−1,𝑡𝑘] is by definition a cubic polynomial 𝑆𝑘(𝑥), shown in 

equation 4.  

 

𝑆𝑘(𝑥)=𝑎𝑘+𝑏𝑘(𝑥−𝑡𝑘−1)+𝑐𝑘(𝑥−𝑡𝑘−1)2+𝑑𝑘(𝑥−𝑡𝑘−1)3,𝑘=1,…,𝑛                    (4) 

Where:  

• 𝑎𝑘,𝑏𝑘,𝑐𝑘,𝑑𝑘 are values to be determined, overall there are 4𝑛 such undetermined 

coefficients 

Box cox transformation (refer to Appendix A) and the transformation specified in equation 1 

were then applied to the data such that it was less skewed with a normal distribution and had a 

standard deviation of 1.  

Opera model (k-nearest neighbours) 

The OPERA model utilizes distance weighted k-nearest neighbors (kNN), which is a refinement 

of the classical k-NN classification algorithm where the contribution of each of the k neighbours 

is weighted according to their distance to the query point, giving greater weight to closer 

neighbours, and Euclidean distance. 

Random Forest  

The baseline model is constructed using an ensemble method known as random forest, that 

combines the output of multiple decision trees to reach a single result. Each decision tree is 

trained on a different subset of the data, and the predictions of all the trees are averaged to 

produce the final prediction.  

I used sklearn’s random forest regressor to predict the boiling points from molecular descriptors. 

First the baseline model takes in the structure of the chemical, which is in the form of SMILES. 

RDkit is then used to generate the molecular descriptors, which serve as inputs for the model, 

which then generates boiling points. Another random forest model is trained on IR spectra and is 

used to generate boiling points, to serve as a comparison with the baseline model, and show the 

difference molecular descriptors and IR spectra have on model accuracy.  



  
 

XGBoost 

XGBoost, which stands for Extreme Gradient Boosting, is a scalable, distributed gradient-

boosted decision tree (GBDT) machine learning library. The XG boosting algorithm creates a 

sequential ensemble of tree models, all of which work to improve each other and determine the 

final output. Random search was used for hyperparameter tuning. (Refer to Appendix B for 

results) 

Feed Forward Neural Network (FFNN) 

A simple FFNN was created to generate the boiling points based on IR spectra data. We 

postulate that FFNNs will provide better performance compared to the random forest and 

XGboost models. Decision trees and tree ensembles perform well on structured data, while 

neural networks are better able to handle unstructured data, such as images. Neural networks 

may also be able to better capture links between different peaks and the substructures within a 

molecule due to their ability to capture non-linear relationships with non linear activation 

functions. The FFNN model architecture used is shown in figure 2.  

 

Figure 2: FFNN architecture 

Convolutional Neural Network (CNN) 

CNNs are widely used for image data, as a filter can be convolved over the input, effectively 

extracting features from images and learning to recognize patterns. This makes them well-suited 

for tasks such as object detection, image segmentation, and classification. In this work, we 

propose CNNs to predict boiling points as differently sized filters can be convolved over the 

spectral input and can identify differently sized peaks in the data. For example, larger filters can 



  
 

identify broader peaks in the data, while smaller filters identify narrower peaks in the data. This 

can help the model to better understand spectral data and better identify links between different 

peaks and the substructures within a molecule, which directly affect boiling point. The basic 

model architecture used for the CNN model is shown in Figure 4.  

 

Figure 4: CNN model architecture 

Layers such as pooling and dropout, along with model parameters such as output channels of 

layers, were decided through hyperparameter search using 2 rounds of random search. Based on 

the top 3 results from the first random parameter search, a secondary range of values for the next 

random search was defined. (Refer to Appendix C for the best set of hyperparameters) 

Results and Discussion  

Model OPERA 

(molecular 

descriptors) 

Baseline 

model 

(molecular 

descriptors) 

Random 

Forest (IR 

spectra) 

XGBoost (IR 

spectra) 

FFNN (IR 

spectra) 

CNN (IR 

spectra) 

Test RMSE 22.08 20.79 58.99 56.02 47.60 42.41 

Through this project, we hope to answer 2 questions:  

1. Is it feasible to explore the use of IR spectra for prediction of boiling points? 

As seen from the results table, the CNN model has a higher RMSE compared to both 

models using molecular descriptors instead of IR spectra. The discrepancy in the accuracy of 

the models could be due to a combination of reasons. IR spectra data is more prone to noise 

due to experimental conditions and instrument variations, as compared to molecular 



  
 

descriptors which are explicit and defined for every molecule. For example, IR spectra data is 

prone to contamination, and some files have resolutions higher than 2, which negatively 

impact the interpolation accuracy. Generally, molecular structure is better for predicting 

boiling point, as boiling points are dependent on types of functional groups within a 

molecule. 

Although it has a lower accuracy, the CNN’s ability to utilize IR spectra data that can 

promptly be acquired enables its use in cases with lack of specialized laboratory equipment, 

access to pure compounds and lack of information. With further research and 

experimentation, the model’s results can be further improved, and is a feasible option to 

explore to mitigate the current challenges associated with boiling point estimation.  

2. Do CNNs outperform FFNNs in handling spectral input?  

In the context of spectral analysis for predicting chemical properties, this study shows 

that CNNs outperform FFNNs in handling spectral input, due to the CNN model’s ability to 

leverage differently sized filters to learn patterns during the convolution process, a feature 

absent in FFNNs. Our research shows that beyond image recognition and classification, 

CNNs have potential to be used for spectral data with good results, and can be explored for 

use in models with spectral inputs. 

Future work 

Contrastive learning can be used to help encode implicit molecular information into the model’s 

weights to increase accuracy. Applying contrastive loss between a spectral encoding from our 

CNN with a molecular encoding from a GNN which predicts the boiling point of chemicals from 

its molecular structure can achieve this. Contrastive loss between positive pairs, or molecular and 

spectral embeddings of the same chemical, is minimized, and vice versa, causing embeddings of 

the same chemicals to be as similar as possible, and vice versa. By learning these patterns, the 

CNN’s weights will be updated to include this molecular information, which will help increase 

its accuracy in the prediction of boiling points.  

The model can be improved to accommodate spectral data from various states, instead of just 

gas. Variation of spectral characteristics across different states requires enhancing the model's 

robustness to these variations. Since the dataset has significantly fewer spectra on solids and 

liquids, more data and data augmentation can enable the model to learn from an equal 



  
 

representation of data. More layers can also be used to capture state specific patterns that may be 

unique to different states.  
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Appendix  

Appendix A: Box Cox Transformation  

The Box Cox Transformation is a popular method of transforming non-normal dependent 

variables into a normal shape. This technique helps to stabilize variance and can improve the 

accuracy of any subsequent statistical tests or models. 

Before applying Box Cox.  other methods of data transformation, namely the log transformation, 

square root transformation, cube root transformation were tested on the left skewed data, but box 

cox was found to reduce the skewness of the data the most, and brought it closest to a normal 

distribution.  

The formula of the box-cox transformation is shown in equation 5. 

𝑋(𝜆) = {
𝑋𝜆−1

𝜆
𝑓𝑜𝑟𝜆 ≠ 0

𝑙𝑜𝑔𝑋𝑓𝑜𝑟𝜆 = 0.
                                           (5) 

Where:  

• X is a random variable on the positive half line  

• 𝜆 is a parameter chosen, in this case the value that maximizes the log-likelihood function 

 

Appendix B: XGBoost hyperparameters 

Subsample 0.9 

Min child weight 0.1 

Max depth 6 

Gamma  4 

Eta 0.1 

Colsample by tree 0.2 

 



  
 

 

Appendix C: CNN hyperparameters 

Hyperparameter name  Value  

Learning Rate  0.001 

Out channels (first convolutional layer) 48 

Kernel size (first convolutional layer) 3 

Stride (first convolutional layer) 1 

Pooling ( after first convolutional layer) 4 

Batch norm (after first convolutional layer) Present 

Padding (first convolutional layer) 3 

Dropout (after first convolutional layer) 0.2 

Kernel size (second convolutional layer) 27 

Stride (second convolutional layer) 2 

Pooling (after second convolutional layer) 1 

Batch norm (after second convolutional layer) None 

Padding (second convolutional layer) 1 

Dropout (after second convolutional layer) 0.0 

Out Features (first linear layer) 672 

The Out Channels of the second convolutional layer and the out features of the second 

convolutional layer are both 1 for a multivariate regression problem. 

 


