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Abstract 

 

Magnetic coils are crucial to quantum-related experiments as homogenous magnetic fields provide 

quantization axes for sensing and enables precise control over quantum states. The design of 

magnetic coils needs to ensure uniformity and field strength, which is further complicated by 

geometric requirements for optical access. We conceptualize, build, and analyze bespoke magnetic 

coils inspired by the Merritt and Braunbeck configurations for the generation of strong and 

homogenous fields with improved optical access. This compact novel configuration provides a 

field that deviates by less than 1% across more than 70% of the coil length, providing strong 

magnetic fields over large spatial volumes with the potential to significantly reduce noise and 

optical restrictions in quantum systems. 

 

1 Introduction 

 

Magnetic fields play an indispensable role in many areas of scientific research, namely for various 

precision measurements. In the context of quantum mechanics, magnetic fields are required in a 

plethora of situations, such as the trapping and laser cooling of atoms [1], and to provide a 

quantization axis for sensing. Such applications serve as the fundamental basis of more complex 

set-ups, including magneto-optical traps for cold atom interferometry [2].  

The generation of homogenous or gradient magnetic fields requires specific, stable, and well-

controlled environments. Even the most miniscule deviations from these optimal magnetic field 

profiles, often due to the unwanted presence of stray signals, will greatly disturb quantum states 

and result in skewed findings. For instance, cold atom interferometry experiments investigating 

the universality of free fall using atoms are highly sensitive to infinitesimal changes in magnetic 

fields of the spatial trajectory through which the atoms travel through. If irregularities in magnetic 

fields cause the atoms’ trajectory to fall off the intended axis of the sensor, the system will become 

susceptible to external interference [3]. These detriments are exacerbated when sensors using 

magnetic fields are operated in environments where large background fields change both spatially 

and temporally. 

Various coil configuration geometries have been devised to create suitable magnetic fields, 

including the solenoid, Helmholtz [4], Braunbeck [5], and Merritt [6] coil geometries, which have 

had sustained success during utilization in many experiments and remain as popular choices for 

the generation of uniform magnetic fields. However, many currently-existing coil geometries are 

constrained by its range of optical access. While ubiquitous coil geometries may prove to be 

versatile in creating uniform or gradient magnetic fields, optical access acts as a major constraint 

when performing measurements [7]. It is best for a spacious view of the region of interest to be 
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available, but the presence of bulky coils and other opaque materials present within the 

experimental setup creates inaccessible areas that block the path of lasers, restricting the spatial 

range for which measurements and observations can be obtained. 

We are hence motivated to create bespoke coil configurations with the primary goal to mitigate 

background magnetic fields and to improve the range of optical access within experimental set-

ups. In this paper, we design and build a novel coil system that posits greater visibility for 

measurements, whilst numerically maximising the uniformity of the generated magnetic field. In 

Section 2, we compare the properties of existing coil geometries (Helmholtz, Braunbeck, and 

Merritt four-coil) and investigate the homogeneity of their fields through numerical means and 

computational simulations. Next in Section 3, we characterise and construct a bespoke coil system 

based on the findings in the previous section. We analyse our resultant model in Section 4, detailing 

the results obtained by our methodology. Lastly, in Section 5, we provide discussions and future 

directions regarding our findings, thereby concluding the paper. 

2 Preliminary Analysis 

To provide insights for the design of our coil system, we first investigate currently-existing coil 

geometries, namely the Helmholtz, Braunbeck, and Merritt four-coil systems, through the 

characterisation of their magnetic flux density, as well as the overall homogeneity of their 

respective fields. To calculate the magnetic field B generated by each coil system, we use the 

fundamental equation of the Biot-Savart law as shown below 

𝑩 =
𝜇0

4𝜋
∫

𝐼𝑑ℓ × 𝒓′

|𝒓′|3𝐶

 

where 𝜇0 is the permeability of free space, 𝑑ℓ is an infinitesimal segment of a path 𝐶, 𝐼 is the 

current through the path, and 𝒓′ = 𝒓 − ℓ is the displacement vector from 𝑑ℓ at a point ℓ along 𝐶, 

to the point 𝒓 at which the field is being computed. Consider a circular coil of radius 𝑅 (m) carrying 

a current 𝐼 (A) with 𝑛 turns of the wire. For a point of a distance 𝑥 (m) away along the centre axis 

of the aforementioned loop, the magnetic flux density B in the axial direction is given as follows. 

𝐵 =
𝜇0𝑛𝐼𝑅2

2(𝑅2 + 𝑥2)
3
2

 

Consider a similar square coil with side length 𝐿 (m). The magnetic flux density at a point of 

distance 𝑥 away is shown. 

𝐵 =
𝜇0𝑛𝐼𝐿2

2𝜋

[
 
 
 

1

(𝑥2 +
1
4 𝐿2)√𝑥2 +

1
2 𝐿2

]
 
 
 

 

In a Helmholtz coil configuration, two identical circular coils with radius R are placed 

symmetrically along a common axis, carrying electrical currents of equal magnitude and direction, 

as shown in Fig. 1. The key characteristic of a Helmholtz configuration is that the separation of 
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both coils is equal to the radius of both coils, thereby providing a uniform field. Using the Biot-

Savart law and the superposition principle, the overall magnetic flux density at the origin can be 

found by adding the magnetic fields generated by each individual coil, as shown. 

𝐵𝑧 = 2 ×
𝜇0𝑛𝐼𝑅2

2 [𝑅2 + (
1
2𝑅)2]

3
2

=
8√5

25
×

𝜇0𝑛𝐼

𝑅
=

0.7155𝜇0𝑛𝐼

𝑅
 

 

Figure 1. A Helmholtz coil configuration. 

The Braunbeck coil configuration is a modified version of the Helmholtz configuration, as shown 

in Fig. 2. Two pairs of coils are placed symmetrically along a common axis, each carrying a current 

of equal magnitude and direction. The radius and separation of each pair of coils is determined by 

various ratios to optimise the uniform field at the centre [8]. The corresponding ratios and the 

magnetic flux density generated by the Braunbeck configuration are shown below, where 𝑎1 is the 

radius of the outer coils, 𝑎2 is the radius of the inner coils, 𝑑1 is the distance between the outer coil 

and the centre, and 𝑑2 is the distance between the inner coil and the centre. 

 

Figure 2. A Braunbeck coil configuration. 

𝑎2

𝑎1
= 1.30907,

𝑑1

𝑎1
= 1.10704,

𝑑2

𝑎1
= 0.36396,

𝑑2

𝑎2
= 0.27803 
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𝐵𝑧 = 2 ×
𝜇0𝑛𝐼𝑎1

2

2(𝑎1
2 + 𝑑1

2)
3
2

+ 2 ×
𝜇0𝑛𝐼𝑎2

2

2(𝑎2
2 + 𝑑2

2)
3
2

=
1.28860𝜇0𝑛𝐼

𝑎2
 

The Merritt four-coil system, illustrated in Fig. 3, uses square coils instead of circular coils as 

commonly seen before in Helmholtz and Braunbeck configurations. Two pairs of square coils, 

equal in length, are symmetrically placed along a common axis. The ratios of the distance 𝑎 from 

the origin to the inner pair of coils, the distance 𝑏 from the origin to the outer pair of coils, and the 

side length 𝐿 are specified [9]. Furthermore, the ratio of the ampere-turns in the inner pair of coils 

𝑛′𝐼′ to that in the outer pair of coils 𝑛𝐼 is also shown. 

𝑎

𝐿
= 0.128106,

𝑏

𝐿
= 0.505492,

𝑛′𝐼′

𝑛𝐼
= 0.423514 

For a Merritt four-coil system, the magnetic field is thus 

𝐵𝑧 = 2
𝜇0𝐿

2

2𝜋

[
 
 
 

𝑛′𝐼′

(𝑎2 +
1
4𝐿2)√𝑎2 +

1
2 𝐿2

+
𝑛𝐼

(𝑏2 +
1
4 𝐿2)√𝑏2 +

1
2 𝐿2

]
 
 
 

=
0.71428𝜇0𝑛𝐼

𝐿/2
 

 

Figure 3. A Merritt four-coil configuration. 

To analyse the homogeneity of the fields generated by each coil geometry, we employ metrics 

describing an “acceptably homogeneous” length as a proportion of the dimensions of the coils 

along each axis. We define a length to be “acceptably homogenous” if the magnetic flux density 

of all points along the length fall within 99% of the magnetic flux density experienced at the origin. 

For simplicity, when discussing square coils, we will refer to the side length as a “diameter”, and 

one-half of the side length as a “radius”. For the radial axis, we define the metric to be a percentage 

of 𝑑/𝐷, where 𝑑 is the length of the acceptably homogenous space along the radial axis and 𝐷 is 

the diameter of the innermost coil. Similarly, along the axial, we define the metric to be 𝑧/𝐻, 

where 𝑧 is the length of the acceptably homogenous space along the axial axis and 𝐻 is the 

separation between the two innermost coils.  
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Furthermore, it is theoretically optimal for each coil to be filamentary, that is, to be infinitely small 

and narrow, bearing negligible thickness. However, real coils must have some finite width and 

thickness due to the physical diameter of the wire and the number of turns. Different coiling 

methods will naturally result in variations to any measurements, hence it may be helpful to discuss 

some specific coiling methods, namely helical coiling and pancake coiling. Helical coiling 

involves loops of a constant diameter being coiled next to each other, like a solenoid. Pancake 

coiling involves loops coiled in an outward spiral, increasing the diameter of each successive loop. 

The analysis for field homogeneity will be performed for filamentary, helical, and pancake coils 

to account for the differences caused by each coiling method. 

For precise simulations and computations of the magnetic flux density, we use Magpylib, an open-

source Python library using vectorised field computation, to calculate the static magnetic fields 

generated by the current coil geometries [10]. Using Magpylib, we construct each of the three coil 

geometries articulated prior, setting the current to one ampere. The filamentary setup only has one 

turn of wire, whereas the helical and pancake coils each have 5 turns of wire within a space of 0.25 

arbitrary units. We then create sensor paths to calculate the magnetic flux density along the radial 

and axial axes at regular intervals, after which we use NumPy and Matplotlib to calculate the 

metrics involving acceptably homogenous spaces. The results are shown in Table 1. Plots for these 

values are included in the Annex. 

Coil geometry Coiling method d/D (%) z/H (%) 

Helmholtz 

Filamentary 37.78 31.38 

Helical 37.98 31.25 

Pancake 42.16 28.69 

Braunbeck 

Filamentary 61.10 213.74 

Helical 61.34 213.19 

Pancake 64.46 195.34 

Merritt four-coil 

Filamentary 64.53 281.42 

Helical 64.74 280.79 

Pancake 67.74 258.38 

Table 1. Proportions of homogenous fields for each coil geometry. 

3 Model & Methodology 

Our preliminary findings show that the Braunbeck coil configuration offers the strongest magnetic 

fields in terms of radius of half side-length, evident from its parametric equation derived from the 

Biot-Savart law. On the other hand, the Merritt four-coil configuration offers the greatest extent of 

an acceptably homogenous space, achieving the upper hand for all coiling methods when 

compared to both Helmholtz and Braunbeck configurations. Furthermore, the square design of the 

Merritt coils provides a larger boundary as compared to the traditional usage of circular coils, 

acting as a crucial aid in improving the optical access of experimental setups, thereby allowing for 

more accurate measurements to be taken from a wider variety of angles and perspectives. The 

respective strengths of the Braunbeck and Merritt coil configurations prompts us to investigate the 

properties of a combination between the two aforementioned designs, as their fusion may posit the 

ability to generate stronger magnetic fields with greater homogeneity, accompanied by a larger 

space for optical access that allows for a higher degree of freedom for observations to be obtained. 

We term this configuration a Merritt-Braunbeck configuration, and visualise this configuration to 
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be similar to that of a Braunbeck coil configuration, simply with square coils replacing the circular 

coils. This forms the basis of our bespoke magnetic coil design. Due to this modification, the 

optimal ratios for radii and separation may differ for a Merritt-Braunbeck configuration, hence 

requiring further investigation to be made regarding the best dimensions for the configuration. 

In order to determine the best separation and dimensions for the Merritt-Braunbeck coil 

configuration, we adopt a numerical and computational approach to systematically estimate the 

optimal ratios, which is done using SciPy’s optimiser algorithms. SciPy is a widely-used Python 

library for scientific computing, equipped with a diverse slew of mathematical functions and 

algorithms [11]. SciPy’s optimiser algorithms focuses on minimisation, taking a parametric 

function alongside an array of initial guesses and employing mathematical algorithms to return an 

array of parameters that provide a minimised output. SciPy boasts many different optimisation 

methods, ranging from Newton’s conjugate-gradient method to Powell’s method. For the purposes 

of our research, we utilise the Nelder-Mead simplex algorithm for the minimisation of our 

multivariate field homogeneity function [12]. Setting 𝑎1 equal to 1 arbitrary unit, we pass in a 

parameter tuple of 3 elements representing 𝑎2, 𝑑1, and 𝑑2, following the original ratios for a regular 

Braunbeck configuration, which acts as reasonable initial guesses. Within the field homogeneity 

function, a magnetic field is simulated using the parameter tuple for the dimensions and separation 

of a filamentary Merritt-Braunbeck configuration. For the majority of dimensions chosen, the 

acceptably homogenous space along the axial axis was enough to last beyond the two innermost 

coils, thereby practically eliminating the need to optimise using the 𝑧/𝐻 metric. Hence, the 𝑑/𝐷 

metric was used as a singular objective function with its reciprocal minimised using the three 

dimensions within the parameter tuple. After several rounds of tuning, the ratios obtained by the 

minimisation optimiser are as shown, providing a radial homogenous length of approximately 

86.07% and an axial homogenous length of approximately 127.02%. 

𝑎2

𝑎1
= 1.40,

𝑑1

𝑎1
= 0.67889,

𝑑2

𝑎1
= 0.19856 

With the ratios obtained, we now construct the physical setup. The setup is prepared with the flatter 

side of the frames facing towards the ground, and built in a vertical manner. Following the ratios 

given above, we let 𝑎1 = 50mm, 𝑎2 = 70mm, 𝑑1 = 33.94mm, and 𝑑2 = 9.93mm. Each frame is 

7mm tall and 7mm thick, with a 5mm width in the middle indented by 5mm inwards to hold the 

wires. Prongs are designed to protrude from each of the 4 corners of the frames, with holes of a 

diameter of 5.5mm. This is such that rods can be slotted through the holes, along with stoppers, to 

provide structural and mechanical support for the entire setup. The 3-dimensional models for the 

smaller frame and the larger frame are shown in Fig. 4a and Fig. 4b respectively. The frames, rods, 

and stoppers are 3D-printed using PLA+ filaments. Each frame is helically coiled in the same 

direction with 4 turns of enamelled copper wire measuring 1.12mm in diameter (CUL 1,12, 

BLOCK Transformatoren-Elektronik GmbH). The metal wires between each frame are connected 

using clips to provide a closed circuit, and the remaining ends are connected with a D.C. power 

supply, providing an electrical amperage of 1A to the entire setup. The completed setup is depicted 

in Fig. 4c. 
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Figure 4. 3D models of the (a) smaller, outer frame and the (b) larger, inner frame, alongside 

(c) the real-life coiled frames complete with rods and stoppers. 

For the physical sensing of the magnetic field, we employ a triple-axis D.C. gaussmeter (VGM 

model, AlphaLab Inc.), equipped with a measurement range of ±799.99𝐺𝑠 and a relative error of 

measurement of ±1% in room temperatures. The probe of the gaussmeter contains the physical 

sensors oriented in the 𝑥, 𝑦, and 𝑧 axes, with the dimensions of the probe measuring 6.3mm by 

6.3mm by 50mm.  The magnetometer is inserted into the setup along the radial and axial axes, and 

measurements of the magnetic flux density across all axes, as well as the overall magnitude of the 

field, are taken at regular intervals of 5mm. 

4 Results 

Mathematically, the parametric equation describing the magnetic flux density generated by the 

filamentary Merritt-Braunbeck coil configuration is as shown, using the optimised ratios found in 

Section 3. 

𝐵𝑧 = 2
𝜇0𝑛𝐼

2𝜋

[
 
 
 

(2𝑎1)
2

(𝑑1
2 +

1
4

(2𝑎1)2)√𝑑1
2 +

1
2

(2𝑎1)2

+
(2𝑎2)

2

(𝑑2
2 +

1
4

(2𝑎2)2)√𝑑2
2 +

1
2

(2𝑎2)2
]
 
 
 

 

=
1.65597𝜇0𝑛𝐼

𝑎2
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Now, we describe our computational and simulated results. As mentioned in the prior section, 

Magpylib simulations show that the optimised ratios provide a radial homogenous length of 

86.07% and an axial homogenous length of 127.02%. The magnetic flux density across the radial 

and axial axes are depicted in Fig. 6a and Fig. 6b. The green line represents the upper bound for 

the homogeneity threshold, and the orange line represents the lower bound for the homogeneity 

threshold. The red points represent the points at which the magnetic field first stops being 

acceptably homogenous. 

 

Figure 6. Simulated (a) radial and (b) axial magnetic flux densities of the Merritt-Braunbeck 

configuration. 

Moreover, according to the same simulations, the magnetic field generated by the Merritt-

Braunbeck configuration possesses two-fold symmetry, providing an equal trend in the magnetic 

flux density along the radial plane for orthogonal directions. A surface plot and a contour plot 

illustrating the distribution and variation of magnetic flux densities along the radial plane are 

shown in Fig. 7a and Fig. 7b respectively. 

 

Figure 7. Simulated (a) 3D surface plot and (b) 2D contour plot depicting magnetic flux 

densities along the radial plane. 
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We now present our experimental findings. As mentioned previously, measurements of the 

magnetic flux density within the Merritt-Braunbeck setup were taken using the triple-axis 

gaussmeter along regular intervals of 5mm. The line plots depicting the magnetic flux densities 

across all three axes are shown in Figure 8a, 8b, and 8c, where we take the 𝑥-axis and 𝑦-axis to be 

the radial axes, and the 𝑧-axis to be the axial axis. 

 

 
Figure 8. The magnetic flux densities generated by the Merritt-Braunbeck coils across (a) the x-

axis, (b) the y-axis, and (c) the z-axis. 

The field has a 𝐵𝑧 value of approximately 1.12Gs at the origin, and spatially varies in a manner 

similar to the aforementioned simulations. The 𝐵𝑥 and 𝐵𝑦 values appear to fluctuate randomly 

throughout the radial plane, but generally follows an increasing trend as the sensor moves upwards 

along the axial plane. Similar to Fig. 6, the grey dotted lines represent the upper and lower bounds 

for the homogeneity threshold for the 𝐵𝑧 value, and the red points represent the lines of intersection 

between the magnetic flux density and the homogeneity threshold. The acceptably homogenous 

lengths span 78.5%, 77.6%, and 150.3% of the 𝑥, 𝑦, and 𝑧 axes respectively, giving a mean radial 

homogeneity of 78.05% when taking the average of the both the 𝑥 and 𝑦 axes. 
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5 Discussion & Conclusion 

With reference to the mathematical parametric equation derived from the Biot-Savart law, the 

Merritt-Braunbeck coil configuration offers a 231.4%, 128.5%, and a 231.8% increase in magnetic 

flux density experienced at the origin when compared to the Helmholtz, Braunbeck, and Merritt 

four-coil configurations respectively, given a constant number of coils, current amperage, and 

radius length. This shows that the Merritt-Braunbeck coil configuration performs excellently in 

generating a strong magnetic field, more than doubling the magnetic flux density created by the 

Helmholtz and Merritt coil configurations. 

Experimental testing of the Merritt-Braunbeck coil configuration aligns closely to the 

computational simulations visualised using Magpylib in Python. The homogeneity metric of the 

field generated by the Merritt-Braunbeck has an average radial 𝑑/𝐷 value of 78.05% and an axial 

z/H value of 140.5%. The radial homogeneity is significantly superior compared to other existing 

coil geometries, boasting a 203.6%, 127.3%, and an 119.7% increase in the 𝑑/𝐷 metric with 

regards to the Helmholtz, Braunbeck, and Merritt configurations respectively for helical coiling 

methods. However, this admittedly comes at the expense of the 𝑧/𝐻 metric, which underperformed 

in comparison to the Braunbeck and Merritt coil configurations, possessing a subpar 65.8% and 

50.2% of their respective axial homogeneities. Furthermore, there appears to be erratic variations 

in the 𝐵𝑥 and 𝐵𝑦 values across all axes, which may be caused by imperfect coiling of the frames, 

leading to stray magnetic fields interfering with the results. 

Overall, the Merritt-Braunbeck magnetic coil configuration holds significant promise for a 

spectrum of quantum-related applications. The enhanced uniformity and strength of the generated 

fields are pivotal for manipulating states and facilitating precise control over quantum systems. 

The Merritt-Braunbeck magnetic coil configuration can be used in the realm of quantum sensors, 

communication, and computing, which relies on uniform magnetic fields for highly-sensitive 

measurements of quantum states, enabling the development of superior technologies. The 

improved optical access also increases the feasibility of integrating quantum setups into both 

compact and versatile systems. With regards to the methodology, the choice of additive 

manufacturing using PLA+ filament was motivated due to its cost-effectiveness and convenience. 

However, 3D-printed plastics are certainly limited by their mechanical durability, which could be 

detrimental to the overall sturdiness of the setup. Additionally, the coiling of the wires was 

imperfect due to challenges faced when inserting the wires into clips and power supplies, which 

contributed to heightened levels of unwanted noise as depicted within our experimental results. 

Other coiling methods, such as pancake coiling, were also largely unexplored via experimental 

methods, as we only constructed a coil configuration with helical coiling in this paper, thus raising 

the possibility of more suitable configurations being overlooked. To address these limitations, 

future investigations could explore alternative materials with better mechanical properties, refine 

the coiling process through automated or industrial means to achieve a neater structure, and 

conduct extensive research on the effects of different coiling methods with regards to field 

homogeneity and strength. These changes may potentially elevate the performance of the magnetic 

configuration and eliminate background noise.  
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Annex 

This annex serves to provide additional graphics and figures illustrating the simulations of the 

homogeneity metrics provided in Table 1. 

For the filamentary Helmholtz coil configuration, 

 

 

For the helical Helmholtz coil configuration, 
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For the pancake Helmholtz coil configuration, 

 

 

For the filamentary Braunbeck coil configuration, 
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For the helical Braunbeck coil configuration, 
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For the pancake Braunbeck coil configuration, 
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For the filamentary Merritt four-coil configuration, 

 

 

For the helical Merritt four-coil configuration, 
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For the pancake Merritt four-coil configuration, 

 

 


