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Abstract

The expanding drone market demands advanced programming for drones in dynamic
environments. In areas with jammed radio signals, remote-controlled and pre-coded drones
fail, especially in unpredictable scenarios like disaster response. This paper introduces a
novel multi-agent adaptive Retrieval Augmented Generation (RAG) system, incorporating
Large Language Models (LLMs) for enhanced functionality. It enables operators to use
natural language commands, allowing drones to quickly adapt to varying situations.

Our approach integrates an adaptive RAG model, error correction modules, an
inference engine, and a simulation component. It learns from Github repositories, with LLM
agents correcting coding errors. Designed for compatibility with Airsim and Dronekit, the
system is modular and secure for defense applications, easily integrating various LLMs.

Empirical tests with GPT-4-1106 demonstrate our system's superiority, achieving
44%, 73%, and 60% success rates in basic, operational, and advanced tasks, respectively,
significantly outperforming GPT-4-1106. This marks a 15-fold improvement in task success,
paving the way for practical drone use. Future efforts will focus on real drone testing, user
interface enhancement, and increasing code processing speed to meet evolving drone
operational needs.



Introduction and Background

In recent years, the exponential growth of drone technology has revolutionised
industries worldwide, by keeping humans away from dull, dirty and dangerous tasks,
evolving from a niche application to a key enabler of many industries. The mission
effectiveness of teleoperated drones today hinges on pilot skill or the ability of the drone to
execute a limited range of automated tasks (or machine states) along human-designated
waypoints [1]. This limits the deployment of autonomous drones to benign missions, and
precludes usage in dynamic, contested environments like disaster zones or conflict areas. In
the realm of drone-based search and rescue or security missions, open challenges persist in
deploying drones that are able to adapt to dynamically challenging environments where swift,
unpredictable situations with minimal or no intervention [2]. However, no reliable model for
coding drones’ behaviours to accomplish novel critical tasks in these environments without
prior training exists, hence driving a strong impetus for this project through exploratory
development at the nexus of robotic control and advances in Large Language Models
(LLMs).

The concept of LLMs has only recently begun to spur wide-ranging applications.
However, such technology is primarily a generalist and “hallucinates” in specialised fields
[3], is not up-to-date, and even those providing near up-to-date data like Bard AI still suffer
from relevance and reliability issues [4] due to data imbalances surrounding specialised,
reliable information online being outnumbered by erroneous responses from netizens. In our
work, we address these shortcomings identified through an adaptive Retrieval Augmented
Generation (RAG), a novel context-specific approach via self-training among other curated
changes. This aimed to solve our problem by optimising adaptability, accuracy, speed, and
user-friendliness all while being storage-efficient for field deployment.

We hypothesise that our multi-agent adaptive RAG model will outperform existing
LLMs like ChatGPT in responding reliably to dynamic scenarios with simple natural
language prompts, thereby addressing the need for a more precise and context-relevant
solution. The code for our project can be found in this repository1. To generate a proof of
concept and empirically benchmark our system, we use a direct comparison between our
model and another powerful LLM, GPT-4-1106.

1 https://github.com/zeauskoh/llm-drone-pipeline
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Methodology

Algorithm Development:

Our system consists of 1 main and 4 assisting segments. The adaptive Retrieval
Augmented Generation (RAG) system, 2 error correcting modules, an inference module and a
simulation segment.

Fig 1: Algorithm flow chart

It is important to note that our system is modular in nature and can be swapped with a
module for use in an intranet for more secure matters. For example, the use of SerpAPI for
querying Google is mentioned as testing on the internet with Google is similar to an intranet
in the logical pathway and allows for these research results to remain unclassified. The base
LLM used and tested for this system is GPT-4-1106. Similarly, this is also modular in nature
and can easily be swapped with any other LLM available including local LLMs if data
sensitivity is a concern. Our test, having a baseline comparison with the LLM it originates
from (GPT-4-1106), allows us to prove the inherent improvement of our system based on a
percentage success rate comparison.

Including “Common Sense Code”:

To enhance user-friendliness and tackle the high specificity in instructions required in
LLM-produced code [5], our system employs a two-part solution. First, an LLM agent
interprets user input into a more precise prompt for the main coding LLM. Second, we
integrate hidden prompts for common drone operations like crash avoidance, ensuring
essential functions are included even if omitted by the user. This is enabled by the positioning
of the hidden prompt in question to give a disproportionate weightage favouring the input.
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Adaptive RAG System:

Fig 2: Adaptive RAG model training flowchart

Our adaptive RAG system (Fig 2) is tailored to address the relevance issue in
traditional RAG databases [6]. If a database is prepopulated with an extensive set of files, the
abundance of irrelevant files results in a reduced response accuracy [7]; if the data set is
prepopulated with only a specially curated set of files, its adaptability becomes limited with
its performance dropping in anything outside its designed scope [8]. Our model captures the
strength of RAG whilst mitigating its limitations: it starts with an initial database which we
intentionally prepopulated to cover basic drone manoeuvres and capabilities, then actively
downloads relevant GitHub repositories based on further user queries to grow its database.

First, an LLM agent takes the processed user input and outputs a string of repositories
relevant to the query, which is then split into individual queries sent to Google searching API,
SerpAPI [8]. The algorithm then obtains GitHub repositories in the top 10 search results and
downloads them in one file. Several filters are applied, the first checking for duplication in
cloned repositories to eliminate storage issues, and the second checking if a repository with a
similar function, such as infrared sensor integration, exists in the database. Through a cosine
similarity test comparing the ReadME of the repository with the descriptions of those in our
database, the repository will only be cloned upon passing both filters.

From here, the model works like a traditional RAG model [8], using OpenAI's text
embedding model for vector database embedding. AutoLLM [9] was piloted as our RAG
model as we can easily optimise the model’s parameters for our coding use case.

Error Correction:

Error correction is critical for code generated by LLMs. We mitigate errors through a
two-tiered approach: one LLM agent corrects syntax errors, while another comments on
logical issues, ensuring the output is both syntactically sound and logically consistent. If the
first agent outputs an accurate code, it is used as the final code. Otherwise, the second agent
(commenter) will provide comments in the form of an appended prompt fed back into the
RAG to refine the script. This is designed to reduce logical discontinuities within the code.
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Simulation:

For simulation compatibility, our system works with both Airsim and Dronekit codes,
featuring a converter for seamless integration. Each specialised LLM agent within our
network is fine-tuned through prompt engineering, utilising unique system messages and
hidden prompts to guide operations effectively.

Testing Framework:

We focused primarily on the AirSim simulator for our tests which is widely
recognised for its drone trust tests and realistic environments [10].

However, as LLM integration with unmanned aerial vehicles (UAV) is an emerging
domain, there are no widely accepted benchmarking frameworks to evaluate such a pipeline.
To generate a proof of concept, we developed a testing framework to demonstrate its
reliability and evaluate its task accuracy, closely mirroring real UAV mission requirements.
This testing framework is categorised into three stages: first, a set of nine tests of basic UAV
capabilities (covers basic manoeuvres like determining local North, takeoff and landing);
second, a set of 11 tests involving operational requirements within contested environments
(which requires computation and path planning such as flying in an equilateral triangle
formation); and third, a set of five advanced tests which involved technical requirements for
challenging operations (specifically obstacle detection and avoidance). The first and second
stages are aligned with the Singapore Unmanned Aircraft Pilot License practical test
requirements [11]. For the third stage, we manually set up blocks directly in the drone’s flight
path which required obstacle detection and avoidance.

During testing, we benchmarked our system against GPT-4-1106, a leading LLM
exhibiting near-general intelligence, surpassing prior models in difficult tasks and showcasing
near-human-level performance [12]. As GPT-4-1106 is a part of our pipeline, this comparison
is essential in testing our hypothesis that an adaptive RAG system and multiple integrated
agents bring significant improvement in performance. All tests were designed to be adaptive,
meaning our system was not pre-trained or fine-tuned. To ensure a fair evaluation of solely
programming logic, we corrected syntax errors in the codes generated by both our pipeline
and the benchmark, GPT-4-1106.

For each test, we crafted natural language commands that specified parameters like
altitude and speed of the drone. We repeated each test three times for both set-ups. Results are
classified as "Successfully Complete", "Partially Complete", or "Fail", and results are
graphically analysed for a clear comparison. The list of test objectives and accompanying
natural language commands can be found in the Annex.

Results

In this section, we compare results between tests on our system and on GPT-4-1106.
For each set of results, we converted them into percentages on a stacked bar chart, with each
category representing Complete Success, Partial Success and Fail. Complete Success cases
refer to instances when the drone in AirSim finishes the assigned mission correctly. Partial
Success is defined as instances when the drone in AirSim executes part of the assigned
mission but deviates or stops. Failure cases refer to instances when the drone in AirSim either
does not take off, or takes off but does not execute any part of the assigned mission.
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Fig 3: Column charts showing levels of success by percentage; separated by stages

Fig 3 represents the results by Stages of our testing. Stage 1, or basic capabilities,
consisted of 9 tests run thrice each, separately for test and control. As shown, across 27 tests
of basic capabilities, our pipeline partially succeeds approximately 56% of the time and
completely succeeds 44% of the time. In comparison, GPT-4-1106 fails 22% of the time,
partially succeeds 67% of the time and completely succeeds 11% of the time.

Stage 2, or operational requirements, consisted of 11 tests run thrice each, separately
for test and control. Across 33 tests, our pipeline fails approximately 18% of the time,
partially succeeds 9% of the time, and completely succeeds 73% of the time. In contrast,
GPT-4-1106 fails 91% of the time and only partially succeeds 9% of the time.

Stage 3, advanced technical requirements, consisted of 5 tests run thrice each,
separately for test and control. As depicted, across 15 tests, our system partially succeeds
40% of the time and completely succeeds 60% of the time. In contrast, the drone following
the code generated by GPT-4-1106 failed in completing the mission for all 15 runs.

Fig 4: Level of mission success as a proportion of tests; overall

Fig 4 displays the total successes, partial successes and failures across all Stages of
testing. It helps us visualise the overall performance differences between our pipeline and
GPT-4-1106. Notably, our pipeline completely succeeded 60% of the time, whereas
GPT-4-1106 only completely succeeded 4% of the time. Our pipeline partially succeeded
32% of the time, while GPT-4-1106 partially succeeded 28% of the time.

Discussion of Results and Implications
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Our testing framework categorised UAV requirements which are success metrics for
drone operations into three stages: basic manoeuvrability, operational requirements and
advanced technical capabilities. Across these three stages, our pipeline significantly
outperformed GPT-4-1106. In terms of complete success, our system is 15 times as effective
as GPT-4-1106. This is a strong indicator of the accuracy of the code our pipeline generated,
even with respect to a powerful LLM like GPT-4, proving our hypothesis that the RAG
system and multiagent setup are highly effective.

In Stage 1, our pipeline had more partial successes, such as flying in L-shape and
U-shape formations, than complete successes, where the drone did not fully complete either
formation and deviated off course. As our pipeline allows for administrative control over the
vector database, these errors can be eliminated by adding the right repositories for turning a
drone through such formations. Nevertheless, it still performed better than GPT-4-1106 which
failed 22% of the time compared to 0% in our pipeline. The code generated by GPT-4-1106
lacked the right preflight commands needed to arm the drone which is a critical flaw, given
that Stage 1 consists only of basic capabilities that a UAV should have in order to fly.

In Stage 2, which focuses on operational requirements such as path-plotting, our
pipeline outperformed GPT-4-1106 by a large margin, reducing the failure rate by 73
percentage points. Further, our pipeline successfully completed its assigned task 73% of all
tests. This is again a positive sign that our pipeline can generate accurate code for operational
requirements. For instance, Test 17 commanded the drone to move in an equilateral triangle
of length 5 metres. Our system accurately calculated the angles for turning the drone through
the manoeuvre and completed a perfect triangle. The flight path recorded can be found in Fig
5, where our pipeline completely succeeded while GPT-4 failed.

Fig 5: Flight path for the multirotor operating under GPT-4-1106 code versus our
pipeline’s code in Test 17

These findings suggest that if this pipeline was applied to real-world environments,
non-technical drone operators can use simple natural language prompts to accurately direct
drones in whichever path they specify. A further example of this would be Test 19, in which
the drone was instructed to fly in a figure of 8. No further instructions concerning how
exactly the drone was to plot its path or make a smooth continuous turn were given, nor was
there a relevant repository in the initial database. Yet, the system was able to generate the
following code, which successfully flew a figure of 8 in AirSim.
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Sample Drone Code 1 Test 19 (Fly in a Figure of 9) | The following code is generated by our pipeline

1 import airsim
2 import time
3 import math
4 TAKEOFF_ALTITUDE = 10 # Target altitude for takeoff in meters
5 ASCENT_SPEED = 1 # Ascent speed in meters per second
6 FLYING_SPEED = 5 # Flying speed in meters per second
7 RADIUS = 20 # Radius of each circle in the figure of 8 in meters
8 HOVER_DURATION = 10 # Duration to hover in seconds
9 client = airsim.MultirotorClient()
10 client.confirmConnection()
11 client.enableApiControl(True)
12 def takeoff(target_altitude, ascent_speed): # Function to take off to a certain altitude at a given speed
13 landed = client.getMultirotorState().landed_state
14 if landed == airsim.LandedState.Landed:
15 print("Taking off...")
16 client.takeoffAsync().join()
17 client.moveToZAsync(-target_altitude, ascent_speed).join()
18 else:
19 print("Drone is already airborne.")
20 def fly_figure_of_eight(radius, speed): # Function to fly in a figure of 8 pattern
21 waypoints = []
22 for angle in range(0, 720, 10): # Two circles, each 360 degrees
23 rad = math.radians(angle)
24 if angle <= 360:
25 x_val = radius * math.sin(rad)
26 y_val = radius * (1 - math.cos(rad))
27 else:
28 x_val = radius * math.sin(rad)
29 y_val = radius * (-1 + math.cos(rad))
30 waypoints.append(airsim.Vector3r(x_val, y_val, -TAKEOFF_ALTITUDE))
31 for waypoint in waypoints:
32 client.moveToPositionAsync(waypoint.x_val, waypoint.y_val, waypoint.z_val,
speed).join()
33 def hover(duration): # Function to hover for a specified duration
34 print("Hovering...")
35 time.sleep(duration)
36 def land(): # Function to land the drone
37 print("Landing...")
38 client.landAsync().join()
39 client.armDisarm(False) # Disarm the drone motors
40 client.enableApiControl(False) # Release control of the drone
41 def perform_mission(): # Function to perform the mission
42 try:
43 takeoff(TAKEOFF_ALTITUDE, ASCENT_SPEED)
44 fly_figure_of_eight(RADIUS, FLYING_SPEED)
45 hover(HOVER_DURATION)
46 land()
47 except Exception as e:
48 print(f"An error occurred: {str(e)}")
49 land()
50 perform_mission() # Execute the mission

The flight paths of our pipeline versus GPT-4-1106 for Test 19 is shown in Fig 6. Our
pipeline completely succeeded in flying a figure of 8, while GPT-4 failed.
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Fig 6: Flight path for the multirotor operating under GPT-4-1106 code versus our pipeline’s
code in Test 19

Another example of the multirotor flight path for both test and control set-ups for
Test 15 (flying in a circle) is shown in Fig 7. Our pipeline completely succeeded while
GPT-4-1106 failed.

Fig 7: Flight path for the multirotor operating under GPT-4-1106 code versus our pipeline’s
code in Test 15

In Stage 3, which involved more technical advanced skills such as obstacle avoidance
and complex navigation, our pipeline again fared much better than GPT-4-1106 which failed
every single run, while our system completely succeeded in 9 out of 15 runs with a 0% failure
rate. The system intelligently searched for relevant repositories like the Bug2 algorithm, an
efficient path-planning, obstacle-avoidance method [13] to be used as additional context for
generating drone code, heightening its success rate. This proves the concept of a truly
adaptive system combined with a multi-agent setup, effective in enhancing code accuracy for
complex tasks. These results confirm the robustness of our approach, indicating a significant
advancement in drone programming for dynamic and demanding environments.

Conclusion
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In conclusion, through this project, we have developed an end-to-end pipeline that
takes in natural language commands from a non-technical drone operator and generates drone
code that succeeds in directing the multirotor within AirSim to fulfil the given objective. Our
benchmarking against GPT-4-1106 further proved the concept of our multi-agent adaptive
RAG system. Specifically, we have proven our initial hypotheses that adopting a multi-agent
setup, with each LLM agent prompt-engineered for a specific function, and that using an
adaptive RAG system to retrieve relevant repositories of drone code as additional context,
can significantly improve the accuracy and reliability of the drone code generated, with
respect to existing powerful LLMs such as GPT-4-1106. Such a novel approach would prove
useful for modern homeland security use-cases, involving dynamic adaptation and quick
turnaround time without over-reliance on operator skill, or availability of skilled pilots.
Further development of our pipeline could see such a system operationalised as a key tool in
drone technologies, contributing profound implications to defence and security.

Future Work

Currently, our algorithm is at a Technology Readiness Level (TRL) [14] of TRL 4. In
order to push this technology further towards real-world use, real drone testing needs to be
conducted, rather than virtually simulated. Such testing was intended and will be carried out
but not within the timeline of this report. Instead, experimental verification to get our
algorithm to TRL 5-7 would be done as future work.

In addition, the user interface is to be developed, whereby a simulation of the drone
code is shown as a way for the user to verify accuracy before it is uploaded to the UAV. Most
importantly, the code processing duration is to be further shortened. Our current code takes
approximately 30 minutes to run each time. Although this length is shorter than the time
generally taken to set up a drone for flight and hence is already viable, it would be ideal to
increase the time efficiency of our algorithm to future-proof our algorithm with the
decreasing set-up duration that drone systems appear to be heading towards.
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Annex

Annex 1: Table of tasks and natural language commands used in our testing framework
Test Task Description Natural Language Command

1 Hover and Land
[Stage 1]

Take off to 10 metres at an ascent speed of 1 metre per
second, then hover in place for 15 seconds. Land the drone
at a descent speed of 1 metre per second.

2 Moving for a set
amount of time
[Stage 1]

Take off to 10 metres at an ascent speed of 1 metre per
second. Move forward in a straight line for 10 metres at a
forward speed of 1 metre per second. Land the drone at a
decent speed of 1 metre per second.

3 Moving and then
returning to origin
point
[Stage 1]

Take off to 10 metres at an ascent speed of 1 metre per
second. Move forward in a straight line for 10 metres at a
forward speed of 1 metre per second. Then return to origin
and land.

4 Basic Motions
[Stage 1]

Take off to 10 metres at an ascent speed of 1 metre per
second. Move forward by 10 metres at a forward speed of 1
metre per second. Then turn 90 degrees to the right, and
move forward by 10 metres at a speed of 1 metre per
second. Then land.

5 Basic Motions
[Stage 1]

Take off to 10 metres at an ascent speed of 1 metre per
second. Move forward by 10 metres at a forward speed of 1
metre per second. Then turn to face the local east, and move
forward by 10 metres at a speed of 1 metre per second. Then
land.

6 Basic Motions
[Stage 1]

Take off to 10 metres at an ascent speed of 1 metre per
second. Move forward by 10 metres at a forward speed of 1
metre per second. Then turn 90 degrees to the left, and move
forward by 10 metres at a speed of 1 metre per second. Then
land.

7 Basic Motions
[Stage 1]

Take off to 10 metres at an ascent speed of 1 metre per
second. Move forward by 10 metres at a forward speed of 1
metre per second. Then turn to local west, and move
forward by 10 metres at a speed of 1 metre per second. Then
land.

8 Basic Motions
[Stage 1]

Take off to 10 metres at an ascent speed of 1 metre per
second. Move forward by 10 metres at a forward speed of 1
metre per second. Then turn to face the local east, and move
forward by 10 metres at a speed of 1 metre per second. Then
turn to face local south, and move forward by 10 metres at a
speed of 1 metre per second. Then land.
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9 Basic Motions
[Stage 1]

Take off to 10 metres at an ascent speed of 1 metre per
second. Move forward by 10 metres at a forward speed of 1
metre per second. Then turn to face local west, and move
forward by 10 metres at a speed of 1 metre per second. Then
turn to face local south, and move forward by 10 metres at a
speed of 1 metre per second. Then land.

10 Moving in a Square
[Stage 2]

Take off to 10 metres at an ascent speed of 1 metre per
second. Move in a square of side length 10 metres, at a
speed of 1 metre per second. Then hover for 10 seconds.
Then land.

11 Moving in a Square
[Stage 2]

Take off to 10 metres at an ascent speed of 1 metre per
second. While constantly facing local north, move in a
square formation where each side of the square is 10 metres,
at a speed of 1 metre per second. Then hover for 10 seconds.
Then land.

12 Moving in a
Rectangle
[Stage 2]

Take off to 10 metres at an ascent speed of 1 metre per
second. Move in a rectangle, where the length is 10 metres
and the breadth is 5 metres, at a speed of 1 metre per second.
Then hover for 10 seconds. Then land.

13 Moving in a
Rectangle
[Stage 2]

Take off to 10 metres at an ascent speed of 1 metre per
second. While constantly facing local north, move in a
rectangle formation, where the longer length is 10 metres
and the shorter breadth is 5 metres, at a speed of 1 metre per
second. Then hover for 10 seconds. Then land.

14 Moving in a Square,
followed by a
rectangle
[Stage 2]

Take off to 10 metres at an ascent speed of 1 metre per
second. While facing local north, move in a square of side
length 5 metres, at a speed of 1 metre per second. Then
hover for 10 seconds. Then while facing local north, move
in a rectangle, where the length is 10 metres and the breadth
is 5 metres, at a speed of 1 metre per second. Then hover for
10 seconds. Then land.

15 Moving in a circle
[Stage 2]

Take off to 10 metres at an ascent speed of 1 metre per
second. Fly in one complete circle of radius 5 metres, at a
velocity 1 metre per second. Then hover for 10 seconds.
Then land.

16 Moving in a circle
[Stage 2]

Take off to 10 metres at an ascent speed of 1 metre per
second. While facing local north, move in a complete circle
of radius 5 metres, at a speed of 1 metre per second. Then
hover for 10 seconds. Then land.

17 Moving in a triangle
[Stage 2]

Take off to 10 metres at an ascent speed of 1 metre per
second. Move in a triangle formation, of side length 5
metres, at a speed of 1 metre per second. Then hover for 10
seconds. Then land.
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18 Moving in a triangle
[Stage 2]

Take off to 10 metres at an ascent speed of 1 metre per
second. While facing local north, fly in a triangle formation,
of equal length 5 metres, at a speed of 1 metre per second.
Then hover for 10 seconds. Then land.

19 Moving in a figure 8
[Stage 2]

Take off to 10 metres at an ascent speed of 1 metre per
second. Fly in a figure of 8, the radius of each circle of the
figure of 8 should be 5 metres, at a speed of 1 metre per
second. Then, hover for 10 seconds. Then land.

20 Moving in a figure 8
[Stage 2]

Take off to 10 metres at an ascent speed of 1 metre per
second. While facing local north, move in a figure of 8, the
radius of each circle of the figure of 8 should be 5 metres, at
a speed of 1 metre per second. Then, hover for 10 seconds.
Then land.

21 Moving to a point
while avoiding one
object
[Stage 3]

Take off to 10 meters at an ascent speed of 1 metre per
second. Your destination is 30 metres local north in your
current reference frame. Fly at a speed of 1 metre per
second, making sure to avoid any obstacles in your path to
reach the destination.

22 Moving to a point
while avoiding two
objects
[Stage 3]

Take off to 10 meters at an ascent speed of 1 metre per
second. Your destination is 30 metres local north in your
current reference frame. Fly at a speed of 1 metre per
second, making sure to avoid any obstacles in your path to
reach the destination.

23 Moving to and from
a point, avoiding
obstacles
[Stage 3]

Take off to 10 meters at an ascent speed of 1 metre per
second. Your destination is 30 metres local north in your
current reference frame. Fly at a speed of 1 metre per
second, making sure to avoid any obstacles in your path to
reach the destination. After this, return to the origin point,
making sure to avoid any obstacles.

24 Moving in a square
formation, avoiding
obstacles
[Stage 3]

Take off to 10 metres at an ascent speed of 1 metre per
second. Move in a square of side length 10 metres, at a
speed of 1 metre per second. If you encounter obstacles,
avoid it and return back to the original square pathway.
After completing the square, hover for 10 seconds and then
land.

25 Moving forward,
encircling obstacle,
then return
[Stage 3]

Take off to 10 metres at an ascent speed of 1 metre per
second. Move forward until you are 1 metre from the
obstacle at a speed of 1 metre per second. Encircle the
obstacle at current height before returning to origin point
and landing.

12



References

[1] J. Morgan, J. Perez, J. Wade, and S. Krishnan, “Security in Drones,” arXiv
[cs.CR], 2023 (accessed Jan. 1, 2024).

[2] K. Okada and E. Hayakawa, “Flow-based ROS2 programming environment for
control drone,” in Communications in Computer and Information Science, Cham: Springer
International Publishing, 2020, pp. 449–453 (accessed Jan. 1, 2024).

[3] M. Bilan, “Hallucinations in LLMS: What you need to know before integration,”
Master of Code Global,
https://masterofcode.com/blog/hallucinations-in-llms-what-you-need-to-know-before-integrat
ion (accessed Jan. 1, 2024).

[4] T. Lacoma and S. Winkelman, “Google Bard explained: What this AI-powered
ChatGPT competitor can do,” Android Police, 08-Feb-2023. [Online]. Available:
https://www.androidpolice.com/google-bard-explained/. (accessed Jan. 1, 2024).

[5] R. Carter, “How to talk to an LLM: Prompt engineering for beginners,” UC Today,
24-Nov-2023. [Online]. Available:
https://www.uctoday.com/unified-communications/how-to-talk-to-an-llm-llm-prompt-enginee
ring-for-beginners/. (accessed: Jan. 1, 2024).

[6] “lancedb/README.md at main · lancedb/lancedb,” GitHub.
https://github.com/lancedb/lancedb/blob/main/README.md (accessed Jan. 1, 2024).

[7] “Retrieval Augmented Generation (RAG),” Cohere AI. [Online]. Available:
https://docs.cohere.com/docs/retrieval-augmented-generation-rag. (accessed Jan. 1, 2024).

[8] “What is retrieval-augmented generation (RAG)?,” Oracle.com, 19-Sep-2023.
[Online]. Available:
https://www.oracle.com/sg/artificial-intelligence/generative-ai/retrieval-augmented-generatio
n-rag/. (accessed Jan. 1, 2024).

[9] Safevideo, “Safevideo/autollm: Ship rag based LLM Web Apps in seconds.,”
GitHub, https://github.com/safevideo/autollm (accessed Jan. 1, 2024).

[10]“Google Search Results in Python,” GitHub, Jan. 02, 2024.
https://github.com/serpapi/google-search-results-python (accessed Jan. 2, 2024).

[11] “UA Pilot Licence,” CAAS - CWP.
https://www.caas.gov.sg/public-passengers/unmanned-aircraft/ua-regulatory-requirements/ua-
pilot-licence (accessed Jan. 1, 2024).

[12] S. Bubeck et al., “Sparks of Artificial General Intelligence: Early experiments
with GPT-4,” arXiv [cs.CL], 2023.(accessed Jan. 1, 2024).

[13] MehdiShahbazi, “Mehdishahbazi/AirSim-multirotor-bug2-algorithm: Python
implementation of Bug2 algorithm to navigate a quadcopter/multirotor in the AirSim
simulator.,” GitHub, https://github.com/MehdiShahbazi/AirSim-Multirotor-Bug2-Algorithm
(accessed Jan. 2, 2024).

13

https://docs.cohere.com/docs/retrieval-augmented-generation-rag
https://docs.cohere.com/docs/retrieval-augmented-generation-rag
https://www.oracle.com/sg/artificial-intelligence/generative-ai/retrieval-augmented-generation-rag/
https://www.oracle.com/sg/artificial-intelligence/generative-ai/retrieval-augmented-generation-rag/
https://www.caas.gov.sg/public-passengers/unmanned-aircraft/ua-regulatory-requirements/ua-pilot-licence
https://www.caas.gov.sg/public-passengers/unmanned-aircraft/ua-regulatory-requirements/ua-pilot-licence


[14] “What are Technology Readiness Levels (TRL)?,” Twi-global.com. [Online].
Available:
https://www.twi-global.com/technical-knowledge/faqs/technology-readiness-levels. (accessed
Jan. 1, 2024).

14

https://www.twi-global.com/technical-knowledge/faqs/technology-readiness-levels

