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Abstract 

Space-time metasurfaces (STMs) are a class of metasurface that modulate in both space and 

time domains. They are capable of controlling the scattering of an incoming electromagnetic 

wave to its fundamental and harmonic frequencies, as well as manipulating the energy and 

momenta of the wave both reciprocally and nonreciprocally. Generating space-time matrix 

(STMx) that fulfil the specific requirements of the task at hand is the primary challenge 

associated with this field.  

In this paper, we investigate the genetic optimization of an STMx in the near-field, far-field 

and oblique incidence cases to control the scattered direction and magnitude of a higher 

harmonic (of the modulation frequency) beam. We show that deflection of all harmonics up 

to 5th order is possible across the {−
𝜋

2
,
𝜋

2
} angular range, as well as exhibiting some other 

possibilities for beam manipulation, and verify our results experimentally. This research can 

be extended to related fields, such as reflectarray antennae and time-modulated arrays. 

Keywords: Space-time modulation, electromagnetics, metasurfaces 

1. Introduction 

A metasurface is an artificial surface constituting of an array of sub-wavelength scale 

periodic elements that can be used to manipulate incident electromagnetic waves. These 

surfaces have drawn growing attention from researchers in recent years, due to their ability to 

provide abrupt phase shift, as well as controlling (both steering and focusing) emitted 

wavefronts. 

Electromagnetic (EM) wave manipulation plays a central role in many fields of science, from 

communications and wireless transmissions to optics and photonics. In this paper, we 

investigate a space-and-time-coding digital metasurface that enables manipulation of EM 

waves in both their propagation patterns, as well as their harmonic power distribution.  

2. Theory 

We can introduce the far-field E-field as a phasor sum of reflected rays from each element. 

We first define our surface as an 𝑀 ×𝑁 array of modulating elements, with elements at 

(𝑝, 𝑞), with 𝑥𝑝+1 − 𝑥𝑝 = 𝑑𝑥,  𝑦𝑞+1 − 𝑦𝑞 = 𝑑𝑦, and reflection coefficients given as a space-

time matrix Γ𝑝𝑞(𝑡) with   

Γ𝑝𝑞(0) = 𝐴𝑝𝑞,0𝛿𝑝𝑞,0 

Γ𝑝𝑞(1) = 𝐴𝑝𝑞,1𝛿𝑝𝑞,1 

                                                                          : 
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Γ𝑝𝑞(𝑇0) = 𝐴𝑝𝑞,0𝛿𝑝𝑞,0 

where 𝐴 and 𝛿 refer to the amplitude and phase of the modulated (𝑝, 𝑞) element, respectively, 

and 𝑇0 is the modulation period, after which the time cycle repeats. In the following section, 

we will investigate a solely phase modulated array. 

We now impinge a plane wave normally on the array with wavenumber 𝑘 =
2𝜋

𝜆𝑐
. From an 

element at position (𝑝, 𝑞) on the array, its scattered E-field in spherical coordinates is given 

by  

𝐸 = 𝐸𝑝,𝑞(𝜃, 𝜙)exp{𝑗𝑘(𝑝𝑑𝑥 sin 𝜃 cos𝜙 + 𝑞𝑑𝑦 sin 𝜃 sin𝜙)} 

where 𝐸𝑝,𝑞(𝜃, 𝜙) is the far-field pattern of the (𝑝, 𝑞) element at the central frequency 𝑓𝑐. For 

simplicity, we set 𝐸𝑝,𝑞(𝜃, 𝜙) to unity unless otherwise specified. Given the length of the time 

array as 𝐿 and neglecting mutual coupling between the elements, the total scattered far-field 

pattern of the 𝑀 ×𝑁 STM array at the 𝑚𝑡ℎ harmonic frequency (𝑓𝑐 +𝑚𝑓0, where 𝑓0 is the 

modulation frequency) can then be written as [1] 

𝐸𝑚(𝜃, 𝜙) = ∑ ∑ 𝐸𝑝,𝑞(𝜃, 𝜙)exp{𝑗𝑘2(𝑝𝑑𝑥 sin 𝜃 cos𝜙

𝑀−1

𝑝=0

𝑁−1

𝑞=0

+ 𝑞𝑑𝑦 sin 𝜃 sin 𝜙)}∑
𝛿𝑝𝑞,𝑏

𝜋𝑚
sin[

𝜋𝑚

𝐿
]ⅇ−

𝑗𝜋𝑚(2𝑏−1)
𝐿

𝐿

𝑏=1

 

where 𝑘2 is the wavenumber of the outgoing wave, given by 𝑘2 =
2𝜋(𝑓𝑐+𝑚𝑓0)

𝑐
 .  

We may now plot the 3D scattering pattern for a few example matrices, with 𝜆 = 3 𝑐𝑚, 𝑑𝑥 =
𝑑𝑦 = 1.5 𝑐𝑚, 𝑝 = 𝑞 = 𝐿 = 8. First, we demonstrate the scattering pattern of a diagonal 

matrix, with the main beam of the first harmonic offset from the normal as shown in Fig. 2.1. 

 

Fig 2.1: 3D scattering pattern of the first harmonic for given Γ. 

 

 
 
 
 
 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 
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We can also generate “vortex beams” with a 4-phase states STM as shown in Fig. 2.2, with 

the phase circulating around the centre of the beam.  

 

Fig 2.2: Vortex beam generation with a (2 bit or) 4 phase-state STM. 

3. Optimization of STMx 

In order to improve the metasurface’s applicability, we now tailor the metasurface to fulfil 

specific requirements. In particular, we seek to deflect the main beam of a certain harmonic to 

a specific angle, while suppressing its sidelobes and all other harmonics. Noting that this 

problem is difficult to solve analytically due to the large (xn) space of solution, we introduce a 

genetic algorithm for optimization. We use a 𝜇+𝜆-GA (genetic algorithm using a population 

of size 𝜇 and recombination pool of size 𝜆) [2], with fitness defined as  

4∑(𝑥𝑝𝑖 − 𝑥𝑝𝑖,0)

𝑖

−max (𝑝1, … , 𝑝𝑖, i ≠ ishift) 

where 𝑥𝑝𝑖,0refers to the target positions of the shifted peaks, with the second term designed to 

lower all other peaks and reduce sidelobes, and the factor 4 being a weighting constant to 

emphasize beam steering over sidelobe suppression. 

Fig. 3. 1 shows the flowchart of the genetic algorithm. The initial generation of matrices is 

randomly generated, and uniformly distributed in the 64-space (for an 88 array). The above 

fitness function is then applied to them, and parents are selected via roulette selection. 

“Child” matrices are generated via crossover of parent matrices, as well as low probability 

bitflip “mutations.” The remaining lowest fitness members are removed to maintain the initial 

population size. This cycle repeats until the maximum fitness exceeds a specified threshold or 

the maximum number of generations is reached, and the optimized matrix is generated. 

After testing, we set the hyperparameters of optimisation as follows:  

• replacement rate = 0.25,  

• mutation rate = 0.05,  

• crossover probability = 0.9, and  

• initial population size = 100.  

𝑥 

𝑦 
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1  
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We reach convergence in about 200 generations in general, with each complete run taking 

less than 30min to plateau (see Fig. 3.2). 

 

Fig 3.1: Flowchart of genetic algorithm. 

 

Fig 3.2: Fitness of population against generation. 

We use a (1,8,8) 2-bit STMx linear array in the following examples. Using 2 bits, we 

generate STM for beam steering and sidelobe suppression. A few examples of this capability 

are shown below (all plots are cuts along the 𝜙 = 0 axis). In Fig 3.3, we shift the 0th 

harmonic (i.e., the fundamental frequency) to 𝜃 = 10°, while in Fig 3.4, we shift the 2nd 

harmonic to 𝜃 = 30°, all while suppressing the other harmonics and sidelobes. 

We may also generate STMs fulfilling more obscure demands by tweaking the fitness 

function. We can steer multiple peaks simultaneously (see Fig. 3.5) or reduce all peaks to a 

uniform level (Fig. 3.6). 
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Fig. 3.3: An optimised STMx for deflection of the 0th harmonic main beam to +
𝜋

18
𝑟𝑎𝑑 (10°). 

 

 

 

 
Fig. 3.4: An optimized STMx for deflection of the 2nd harmonic to +

𝜋

6
𝑟𝑎𝑑 (30°). 

 

 

 
Fig. 3.5: A STM deflecting the 0th harmonic to +15° and the 1st harmonic to −30°. 
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Fig. 3.6: A STM making all harmonics uniform in peak gain. 

Interestingly, there seem to be many local maxima for each problem. If we take the Frobenius 

norm of each STMx generated for a single problem, we find that they are essentially 

randomly distributed throughout the 64-space, even with each matrix being functionally 

identical in far-field pattern generated (see Fig. 3.7 for example). 

 

  

Fig 3.7: A comparison of the positions of 3 matrices (red line) from a control matrix 

(optimised for 30° deflection of 1st harmonic) in 64-space, showing that they are significantly 

different. 

 

 

 

 

 

 

 

Fig 3.8: A comparison of far-field scattering pattern for the 1st and 3rd matrices of Fig. 3.7. 

We also note that the efficacy of this optimisation can be improved with increased number of 

bits or elements, as seen in Fig 3.9, where increasing bits speeds up convergence and slightly 

increases final fitness. This is due to the increased resolution of the phase space and thus 

greater control over beam steering. In fact, as the number of elements and bits goes to infinity 

(a continuous metasurface), we can achieve 100% energy throughput efficiency. Of course, 
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this is unrealistic in a practical scenario, so we shall restrict our discussion to relatively small 

metasurfaces, with time and space lengths less than 10 elements. 

 

Fig 3.9: Comparison of convergence rates for 2-bit, 3-bit and 4-bit optimizations. 

4. Oblique incidence 

If the plane wave is not incident normally upon the metasurface, we can modify the outgoing 

distance phasor term in the scattering pattern of the mth harmonic to obtain the following,  

𝐸𝑚(𝜃, 𝜙) = ∑ ∑ 𝐸0(𝜃)exp{𝑗𝑘1(𝑝𝑑𝑥 sin 𝜃𝑖 cos𝜙𝑖 + 𝑞𝑑𝑦 sin 𝜃𝑖 sin𝜙𝑖)

𝑀−1

𝑝=0

𝑁−1

𝑞=0

+ 𝑗𝑘2(𝑝𝑑𝑥 sin 𝜃 cos𝜙 + 𝑞𝑑𝑦 sin 𝜃 sin𝜙)}∑
𝛿𝑝𝑞𝑏

𝜋𝑚
sin[

𝜋𝑚

𝐿
]ⅇ−

𝑗𝜋𝑚(2𝑏−1)
𝐿

𝐿

𝑏=1

 

where the incident plane wave is at angle (𝜃𝑖 , 𝜙𝑖), the wavenumber of the incident wave is 

𝑘1 =
2𝜋𝑓1

𝑐
, and the wavenumber of the outgoing wave is 𝑘2 =

2𝜋𝑓2

𝑐
 , where 𝑓2 = 𝑓1 +𝑚𝑓0 and 

𝑓0 is the modulation frequency. 

Optimised matrices for this system may be obtained by direct genetic optimisation (as above), 

or phase-shifting an already optimised matrix for normal incidence as such for 𝜙𝑖 = 0 

(however, this may result in quantisation errors depending on bit resolution): 

Γ𝑜𝑏𝑙𝑖𝑞𝑢𝑒 = Γ𝑛𝑜𝑟𝑚𝑎𝑙 + (
0 𝑑𝑥 sin 𝜃𝑖 ⋯ (𝑁 − 1)𝑑𝑥 sin 𝜃𝑖
⋮ ⋮ ⋱ ⋮
0 𝑑𝑥 sin 𝜃𝑖 ⋯ (𝑁 − 1)𝑑𝑥 sin 𝜃𝑖

) 

The asymmetry of this system allows for some interesting nonreciprocal effects [3]. If a plane 

wave is impinged upon the STM at 𝜃 = +60°, with modulation frequency of 250 MHz, 

incident wave frequency of 5 GHz, and 𝑑 =
𝜆

2
, the 1st harmonic (5.25 GHz) of the outgoing 

wave is at 𝜃 = −20.3°. However, when a plane wave at 5.25 GHz is incident at 𝜃 = −20.3°, 

the outgoing 1st harmonic (5.5 GHz) dominant beam is instead deflected to 𝜃 = +51.2° as 

shown in Fig. 4.1. 

𝐺ⅇ𝑛ⅇ𝑟𝑎𝑡𝑖𝑜𝑛𝑠 
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Fig 4.1: Nonreciprocity of metasurface: incident angle 𝜃 = 60° (L) and 𝜃 = −20.3° (R). 

5. Near-field incidence 

In many applications, we may be interested in the case where the incoming wave is from a 

relatively nearby source and is reflected to form the received far-field pattern. For this near-

field incidence case (where the wave arrives as a spherical rather than a plane wave) we may 

handle the reflection by simply adding a phase constant dependent on the distance of the 

array element from the beam source. Then, the far-field scattering pattern can be written as 

follows, with 𝑟 being the position of the beam source relative to the array:  

𝐸(𝜃, 𝜙) = ∑ ∑ 𝐸0(𝜃)exp{𝑗𝑘1|𝑟

𝑀−1

𝑝=0

𝑁−1

𝑞=0

− (
𝑝𝑑𝑥
𝑞𝑑𝑦
0

) |}exp{𝑗𝑘2(𝑝𝑑𝑥 sin 𝜃 cos𝜙

+ 𝑞𝑑𝑦 sin 𝜃 sin𝜙)}∑
𝐴𝑝𝑞𝑏δpqb

𝜋𝑚
sin[

𝜋𝑚

𝐿
]ⅇ−

𝑗𝜋𝑚(2𝑏−1)
𝐿

𝐿

𝑏=1

 

As an example, we set the beam source location at 1.67𝜆 above the centre of the metasurface. 

We can then rerun the optimization and obtain optimized matrices and scattering patterns for 

this new scenario (see Fig. 5.1). Alternatively, similarly to the above scenario of oblique 

incidence, we can modify an optimised matrix for normal incidence via adding a phase-shift 

constant to each element given by: 

𝛿𝑠ℎ𝑖𝑓𝑡 = 𝑘1 |𝑟 − (
𝑝𝑑𝑥
𝑞𝑑𝑦
0

)| 

We find that these optimised STMx approach approximately with equal efficiency (fitness-

wise) as in the first scenario, which is intuitive. 

𝐺𝑎𝑖𝑛/𝑑𝐵 𝐺𝑎𝑖𝑛/𝑑𝐵 

𝜃/𝑟𝑎𝑑 

harmonic 
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Fig 5.1: A metasurface steering the 3rd harmonic in the +60° direction (near-field) 

 

6. Extension to reflectarray antennas 

We can apply the same method to the optimisation of the phase settings for reflectarray 

antennas. As the phase-shift is now time-invariant, the far field scattering pattern simplifies 

to: 

𝐸(𝜃, 𝜙) = ∑∑
𝐴𝑝𝑞δpq𝐸0(𝜃)exp {𝑗𝑘 |𝑟 − (

𝑝𝑑𝑥
𝑞𝑑𝑦
0

)| ×

exp{𝑗𝑘(𝑝𝑑𝑥 sin 𝜃 cos𝜙 + 𝑞𝑑𝑦 sin 𝜃 sin 𝜙)}

𝑥

𝑝=0

𝑦

𝑞=0

 

In reflectarray antennas, it is often desired that the edge taper is about 10dB. Hence, we 

modify 𝐸0(𝜃) = |𝐸0|cos
𝑒 𝛼𝑖, where 𝛼𝑖 is the angle between the incident beam and the 

reflectarray element and e is the power factor of the pattern to match the desired edge taper.  

Similar to above, we would like to both control sidelobes and steer the main beam of the 

reflected field. Unlike the STM, an analytic solution for beam steering is readily available as: 

𝛿𝑥𝑦 = 𝑘[𝑑𝑖 − sin 𝜃𝑑 (𝑥𝑖 cos 𝜙𝑑 + 𝑦𝑖 sin𝜙𝑑)] 

where {𝜃𝑑 , 𝜙𝑑} is the desired beam steering angle. However, this does not take sidelobes into 

account, which may be unnecessarily large and reduce the energy throughput of the main 

beam. To rectify this, we can simply rerun the same genetic algorithm used above, with the 

initial population consisting of 8 by 8 matrices that fulfil the above condition. This 

significantly speeds up optimisation, and we end up with a satisfactory solution in under 80 

generations (see Fig. 6.2). In Fig. 6.1, we can see that an unoptimized matrix has its main 

beam in the correct direction but has significant sidelobes that reduce its gain (~28dB), while 

the optimised matrix has significantly reduced sidelobes and increased gain (~32dB). 
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Fig 6.1: Comparison of radiation patterns of unoptimized and optimized reflectarray antenna. 

  

Fig 6.2: Convergence of reflectarray antenna optimisation 

7. Extension to time-modulated linear arrays 

Time-modulated linear arrays (TMLAs) are binary amplitude-modulated arrays controlled by 

the application of variable width electronic pulses to the array elements. Hence, in the usual 

case where the pulse lengths are a divisor of the total time sequence length, the system 

behaviour is essentially identical to that of a 1-bit amplitude modulated STM. We can thus 

apply the same techniques as above. The most common application of TMLAs is for efficient 

sidelobe suppression without the use of phase-switching. We demonstrate this capability 

below by optimising an 8-domain array with time matrix length 8. 
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Fig 7.1: Sidelobe suppression with optimised time-modulated linear array 

8. Experimental verification 

To verify the above results, we run an experiment based on a simulated version of the space-

time metasurface via a time-modulated array. 

8.1 Experimental Design 

The experiment is setup is as shown in Fig. 8.1.1. 

 

Fig 8.1.1: Experimental set-up in office space. (L) Complete view of setup. (Top-R) View of 

STM array and its RF backend, power supply and controller. (Bottom-R) Receiving end with 

receive horn connected to spectrum analyser. 
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The following simulated metasurfaces were tested: 

Test case Matrix (x: space; y: time) Notes 

1 

 

 
 
 
 
 

2 2 1 1 0 0 3 2
2 1 1 0 0 3 2 3
2 2 1 1 1 0 3 3
2 1 1 1 0 0 0 2
1 2 1 0 3 0 3 2
2 2 2 1 0 3 3 2
3 1 1 0 0 3 3 3
2 1 0 0 0 3 3 3 

 
 
 
 
 

 

 

Steering of fundamental harmonic to +15  

2 

 

 
 
 
 
 

0 0 0 0 3 3 2 2
0 0 0 0 0 0 3 3
1 1 0 0 0 0 0 0
2 1 1 1 0 0 0 0
2 2 2 1 1 1 1 0
3 2 2 2 2 1 1 1
3 3 3 2 2 2 2 1
0 0 3 3 3 2 2 2 

 
 
 
 
 

 
Steering of 1st harmonic to +7.5 

3 

 

 
 
 
 
 

1 1 3 1 3 2 1 0
3 0 3 1 0 3 3 3
3 1 3 3 1 3 2 0
2 2 0 0 1 0 3 1
0 2 0 3 2 0 3 1
3 3 0 0 3 1 3 2
1 0 1 1 3 2 0 3
0 0 2 2 3 1 0 1 

 
 
 
 
 

 

 

Oblique incidence at -30, steering of 1st 

harmonic to +15 

4 

 

 
 
 
 
 

1 2 1 0 3 3 3 3
3 1 1 0 0 0 1 2
3 2 1 2 1 0 0 3
2 3 2 3 1 1 1 0
0 3 2 2 2 1 1 0
3 0 2 3 3 2 1 1
1 1 3 0 3 3 2 2
0 1 0 1 3 2 2 0 

 
 
 
 
 

 

 

Test case 3 uncorrected for oblique incidence 

(assuming normal incidence) 

 

8.2 Experimental Results 

We find that the experimental results match extremely well with the theoretical model, with 

most of the measured relative amplitudes of harmonics at projected angles deviating from the 

predicted values by less than 0.1, which is less than experimental error (Fig 8.2). We were 

also able to observe beam steering in the expected directions, verifying the effectiveness of 

this process. 
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Fig 8.2.1: Harmonic power distribution (L) and comparison between predicted and 

experimental harmonic amplitudes (R) for case 1. 

Fig 8.2.2: Harmonic power distribution (L) and comparison between predicted and 

experimental harmonic amplitudes (R) for case 2. 

 

Fig 8.2.3: Harmonic power distribution (L) and comparison between predicted and 

experimental harmonic amplitudes (R) for case 3. 
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Fig 8.2.4: Harmonic power distribution (L) and comparison between predicted and 

experimental harmonic amplitudes (R) for case 4. 

9. Conclusion 

We have demonstrated the capabilities of STM for beam steering and suppression of 

sidelobes and harmonics in both the near-field and far-field incidence cases using genetic 

optimisation, verifying the theoretical results with an experimental prototype, as well as 

proved the applicability of this method in related fields such as reflectarray antennae and 

time-modulated arrays. 
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Appendix 1 

Derivation of scattering pattern for phase-modulated STMx: 

𝐸(𝜃, 𝜙) = ∑∑Γ𝑝𝑞(𝑡)𝐸0(𝜃, 𝜙)exp{𝑗𝑘(𝑝𝑑𝑥 sin 𝜃 cos𝜙 + 𝑞𝑑𝑦 sin 𝜃 sin 𝜙)}

𝑚

𝑝=0

𝑛

𝑞=0

 

Where Γpq(𝑡) is the time-modulated reflection coefficient of the (𝑝, 𝑞) element. It is assumed 

to be a periodic function of time, defined over one period as a linear combination of shifted 

pulse functions as follows:  

Γ𝑝𝑞(𝑡) = ∑Γ𝑝𝑞
𝑛 U𝑝𝑞

𝑛 (𝑡)

𝐿

𝑛=1

, (0 < t < 𝑇0) 

where U𝑝𝑞
𝑛 (𝑡) is a periodic pulse function with modulation period 𝑇0. Γ𝑝𝑞

𝑛 = A𝑝𝑞
𝑛 exp(𝑗𝜙𝑝𝑞

𝑛 ) is 

the reflection coefficient of the (𝑝, 𝑞) element during the interval (𝑛 − 1)𝜏 ≤ 𝑡 ≤ 𝑛𝜏 at the 

central frequency, where A𝑝𝑞
𝑛  and 𝜙𝑝𝑞

𝑛  denote the amplitude and phase, respectively.  

In each period T0,  

 
U𝑝𝑞
𝑛 (𝑡) = {

1, (𝑛 − 1)𝜏 ≤ 𝑡 ≤ 𝑛𝜏
0, otherwise               

  

To remove the time dependence, we may then convert Γ to a Fourier sum in harmonics of the 

main beam: 

Γ = ∑Γ𝑝𝑞
𝑛 ∫ ⅇ−2𝜋𝑖𝑚𝑓𝑜𝑡

𝑛𝜏

(𝑛−1)𝜏

𝐿

𝑛=1

𝑑𝑡 

=∑Γ𝑝𝑞
𝑛 ∫ ⅇ−2𝜋𝑖𝑚𝑢

𝑛𝜏
𝑇0

(𝑛−1)𝜏
𝑇0

𝐿

𝑛=1

𝑑𝑢 

=∑Γ𝑝𝑞
𝑛 ∫ ⅇ−2𝜋𝑖𝑚𝑢

𝑛
𝐿

(𝑛−1)
𝐿

𝐿

𝑛=1

𝑑𝑢 

=∑
Γ𝑝𝑞
𝑛

𝜋𝑚
sin[

𝜋𝑚

𝐿
]ⅇ−

𝑖𝜋𝑚(2𝑏−1)
𝐿

𝐿

𝑛=1

 

And as such, derive the expression for the E-field as above: 

𝐸(𝜃, 𝜙) = ∑∑𝐸0(𝜃)exp{𝑗𝑘(𝑝𝑑𝑥 sin 𝜃 cos𝜙

𝑀

𝑝=0

𝑁

𝑞=0

+ 𝑞𝑑𝑦 sin 𝜃 sin𝜙)}∑
𝐴𝑝𝑞,𝑏𝛿𝑝𝑞,𝑏

𝜋𝑚
sin[

𝜋𝑚

𝐿
]ⅇ−

𝑗𝜋𝑚(2𝑏−1)
𝐿

𝐿

𝑏=1
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Appendix 2 

Time cuts of vortex beam STMx (t=1 to 8) for Fig. 2.2. 

 

 
 
 
 
 

2 2 2 2 2 2 2 1
2 2 2 2 2 2 1 1
2 2 2 2 2 1 1 1
2 2 2 2 1 1 1 1
3 3 3 3 0 1 1 1
3 3 3 0 0 0 1 1
3 3 0 0 0 0 0 1
3 0 0 0 0 0 0 0 

 
 
 
 
 

 

 

 
 
 
 
 

2 2 2 2 1 1 1 1
3 2 2 2 1 1 1 1
3 3 2 2 1 1 1 1
3 3 3 2 1 1 1 1
2 2 2 2 0 0 0 0
2 2 2 3 0 0 0 0
2 2 3 3 0 0 0 0
2 3 3 3 0 0 0 0 

 
 
 
 
 

 

 

 
 
 
 
 

2 2 2 2 2 2 2 1
3 2 2 2 2 2 1 1
3 3 2 2 2 1 1 1
3 3 3 2 1 1 1 1
3 3 3 3 1 1 1 1
3 3 3 0 1 1 1 1
3 3 0 0 1 1 1 1
3 0 0 0 1 1 1 1 

 
 
 
 
 

 

 

 
 
 
 
 

2 2 2 2 1 1 1 1
2 2 2 2 1 1 1 1
2 2 2 2 1 1 1 1
2 2 2 2 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 

 
 
 
 
 

 

 

 
 
 
 
 

1 1 1 1 2 2 2 1
2 1 1 1 2 2 1 1
2 2 1 1 2 1 1 1
2 2 2 1 1 1 1 1
3 3 3 3 3 0 0 0
3 3 3 0 3 3 0 0
3 3 0 0 3 3 3 0
3 0 0 0 3 3 3 3 
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3 3 3 3 0 1 1 1
3 3 3 3 0 0 1 1
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2 2 2 2 1 1 1 0
3 2 2 2 1 1 0 0
3 3 2 2 1 0 0 0
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3 3 3 3 0 0 0 0
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