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Abstract 

Prediction of chemical properties is of interest due to their use in important tasks like screening 

candidates for novel drugs. In predicting, practical experiments are time-consuming and 

expensive, leading computational methods to be of recent interest. Recently, research to predict 

reaction properties given the reaction has shown promising results. Independently, research to 

infer spatial information using machine learning models has shown improvements in molecular 

predictions. Extracting ideas from both previous works, we aim to create a model to improve 

accuracy in reaction property predictions through inferring spatial information, using activation 

energy as our reaction property. We achieve this through a multi-step training process. First, we 

train two models, both with the objective to predict activation energy, one inputting only reaction 

information, termed the reaction model, and the other inputting only spatial information.  Next, 

to implicitly encode spatial information into the reaction model, the models are contrastively 

trained to maximize their mutual information. Finally, to predict activation energy, the 

contrastively trained reaction model is trained on reaction inputs again. Our method produces 

statistically significant reductions in mean absolute error with a p-value of 0.002, reducing mean 

absolute error to 6.02, from the initial reaction model of 6.12, whilst maintaining similarly high 

speeds of prediction. Our work validates the possibility of spatial information inference with 

reaction models to improve activation energy predictions. Inferring spatial information would 

allow scalability of the model to reactions containing larger molecules and allows for use of 

higher quality conformers during training, without a trade-off in prediction speed. 

Introduction 

Prediction of reaction properties is of great importance for various processes, especially in organic 

synthesis planning for novel drugs or new materials. In predicting reaction properties, practical 

observation first comes to mind, however it would be time-consuming and expensive. As an 

alternative, computational methods have been of interest. One computational approach is to use 



   

 

 

   

 

quantum simulations such as Density Functional Theory to predict chemical properties to a high 

level of accuracy. However, such methods are time consuming, taking up much more time with 

larger molecules. A second approach, which we are interested in, is data-driven machine learning 

methods. Such methods have been enabled by the emergence of large chemical datasets like [1].  

Two past works are of our interest. In the first, cited in [2], Heid and Green propose a general 

architecture to take in reactions as SMILES strings, either balanced or unbalanced. They show that 

their method outperforms state-of-the-art models in accuracy in a range of reaction property 

predictions, such as activation energy, enthalpies, and rate constants. 

In the second, cited in [3], Stärk et al. proposed a method to implicitly encode spatial information 

into molecular models to allow the molecular models to reason using spatial information, without 

having spatial information as input during test time. They show that their method does improve 

results over pure molecular models, but using full spatial information outperforms implicit 

information. However, their main advantage is in their speed and ability to predict molecular 

properties accurately in the absence of spatial information at test time. 

For this paper, we focus on the prediction of activation energies when given only the reaction 

SMILES, which is a representation of the reaction. We would like to take inspiration from some 

ideas from both papers. Our work wishes to implicitly encode spatial information in encodings of 

reaction SMILES, inspired by but differing from Stärk’s implicit encoding only onto molecular 

SMILES. The purpose is twofold: spatial information is highly useful in predicting chemical 

properties, we wish to implicitly encode it on top of reaction information to improve accuracy. At 

the same time, by implicitly encoding information, we improve the speed of the model at test time, 

as spatial information would not need to be generated during test time.  

Methodology 

To perform our training, we first need to generate spatial information for our reactions. Our 

training consists of three stages. We first created two models, one taking in reaction SMILES, 

the other taking in spatial information. Next, we perform contrastive learning between the two 

models. Finally, we train the reaction SMILES input model once again to obtain our final model. 

Conformer Generation 



   

 

 

   

 

To generate spatial information, we first generated conformers for the various molecules in the 

dataset using ETKDG [6]. We first split up the reaction into its component molecules, generating 

conformers for each molecule. We generated multiple conformers for each molecule, ensuring a 

range of candidates for the lowest energy conformer. Some conformers generated by ETKDG were 

similar, hence we pruned some of them off. Afterwards, we carried out energy minimization using 

MMFF94 [7]. We then chose the lowest energy conformer of the tuned conformers as the 

conformer for that molecule. These conformers were then put into a reaction representation, 

forming an analogue to the original reaction.  Details for exact generation and pruning parameters 

can be found in the Appendix. 

Unfortunately, MMFF94 failed to minimize energy for conformers of certain molecules, such as 

molecules containing boron. For this project, we chose to filter away the molecules for which 

conformers could not be generated for. This leaves us with a reduced dataset containing only 

reactions with all molecules having valid conformers. The rationale for filtering and results without 

the filtering of molecules is presented in the Appendix. 

Reaction Model 

To predict reaction properties from reaction SMILES strings, Heid and Green proposed a two-step 

method which we followed. First, the reaction SMILES is transformed into an encoding by the 

encoder. Then, the encoding is turned into the actual reaction property prediction by the feed-

forward network. These two components form a model that takes in a reaction SMILES, and 

outputs the desired reaction property. Exact details can be found in [2]. 

For this project, we largely used the chemprop library on GitHub [8], directly modifying it to work 

for our purposes. For the reaction model, chemprop’s architecture contained Heid and Green’s 

method to train a model using only reaction inputs, without any spatial information to predict 

activation energy. We term this model as our Reaction Model. Refer to Figure 1. 



   

 

 

   

 

  

Figure 1: Training processes for the Reaction and Spatial Models 

Spatial Model 

From the previously generated conformers, we get the coordinates of each atom in space. However, 

we do not use coordinates directly as they would change with translation and rotation of the 

molecule. Hence, drawing inspiration from [3], we converted the coordinates generated into 

translation and rotation invariant distances. We first convert the coordinates of the reactants. From 

the molecular graph, we took the Euclidean distance between bonded atoms to find their bond 

length. We then created a distance matrix for all atoms in the reactants. For atoms within the same 

molecule, we took their Euclidian distance based on their coordinates. For atoms within different 

molecules, we set their distance to 100, to represent an infinitely large distance. The atom distance 

matrix and bond lengths are then mapped to higher dimensions, using the same method as [3], in 

hopes of improving results. We convert the products in a similar fashion to the reactants. 

We then train the spatial model, which has a similar architecture to the reaction model, to predict 

activation energy. Refer to figure 1 for the architecture. We input the above generated atom and 

bond spatial information for both products and reactants to the spatial model. Additionally, we 

included the atomic number and bond type as inputs to the spatial model. Other molecular features 

were not present.  

Contrastive Learning 

From the previous two subsections, we have produced two models: one for predicting activation 

energy given a reaction equation: the reaction model, and another given mostly spatial information: 

the spatial model. Both models first turn the input into an encoding, we call this portion the 

encoder, then predict based on that encoding.  



   

 

 

   

 

For contrastive learning, we wish for reaction and spatial encodings to have a high similarity if 

they correspond to the same reaction; a low similarity if they correspond to different reactions. 

This would accurately encode of spatial information implicitly into reaction encodings. It is 

important to note that we have deliberately trained the two models with mutually exclusive 

features. This ensures that the similarity of our encodings output by our reaction model after 

contrastive learning is only due to the similarity to spatial information. 

To conduct our training, we use both trained encoders simultaneously. Initially, we use the trained 

weights of both encoders, adding a linear layer to change the size of the encoding. Refer to figure 

2. To the molecule encoder, we feed in the reactions for which all molecules have conformers. To 

the spatial encoder, we feed in the conformers of the reactions. We calculate the loss between the 

two output lists of encodings. The loss function used is NTXloss [3], which has the formula: 

 

where                                                           , the cosine similarity, and τ is a temperature 

parameter. 

After training, we removed the last linear layer and ended up with two encoders: the augmented 

molecule encoder with implicit spatial information and the augmented spatial encoder with 

implicit molecule information. Of the two, we use only the augmented reaction encoder. 

Final Training 

Refer to figure 2. Here, we train an encoder, initializing its weights to the weights of the augmented 

reaction encoder. Then, we input these encodings to train a feed-forward network. To form a single 

model that predicts activation energy given a reaction SMILES, we put the trained encoder and 

the feed-forward network as a singular model. We term this model as our Final Model.  



   

 

 

   

 

 

Figure 2: The contrastive learning process and the Final Training process 

More details on training parameters for the methodology are within the Appendix. 

Data Preparation 

For this project, our data was sourced from [4]. Specifically, we used fold_0 of the ωB97X-D3 

dataset to predict activation energies. The dataset contains a variety of reactions from unimolecular 

reactants to either unimolecular or multimolecular products, for a total of about 23000 reactions 

containing up to 7 heavy atoms in the reactant. The reaction data used Density Functional Theory 

to calculate activation energy to a high level of accuracy[5]. The train and validation data used the 

“aam_train.csv” file in the same folder. The test data used “aam_test.csv” in the same folder. 

Results and Discussion 

Through this project, we wish to answer 2 questions: 

1. Does spatial information inference give greater accuracy on activation energy predictions? 

We use a test set of 1682 reactions provided in the test file for a fold of ωB97X-D3, which has 

been filtered, ensuring that all reactions have molecules that can generate conformers. To test this 

hypothesis, we compare the reaction model and our final model. As an additional test, we also 

compare the spatial model. We compare them on two metrics, mean absolute error (MAE) and 

root-mean squared error (RMSE). 

 Reaction Model Spatial Model Final Model 

MAE 6.12 21.4 6.02 

RMSE 9.56 26.9 9.46 

Table 1: A comparison of the performances of the three trained models 



   

 

 

   

 

To test if the improvement of the model is statistically significant, we perform a paired t-test 

between the absolute errors of reaction model and the final model at 1% significance level. The 

null hypothesis is that there is no reduction in the absolute error, the alternative hypothesis is the 

final model does reduce the absolute error, with 1681 degrees of freedom, giving us a p-value of 

0.002. We reject the null hypothesis at 1% significance level, concluding that the final model 

shows statistically significant improvements over the reaction model. 

We have shown with our model that the implicit inference of spatial information can improve 

activation energy predictions. However, discussed in the Appendix, using more training data, the 

reaction model outperformed our implicit inference training. Therefore, we recommend that spatial 

information inference be used best when there is a high availability of accurate data. 

Of interest to note is how the spatial model is unable to accurately predict the activation energy. 

However, when the reaction model is made to contrastively learn from encodings from the spatial 

model, it performs better than without the contrastive learning. A possible reason is that when the 

conformer generated is converted into an encoding, it does not contain enough information to fully 

model the reaction. However, the encoding generated by the spatial model contains valuable 

information about properties of the reaction, not present within encodings of the reaction model. 

This would allow the contrastive learning to enhance the information within the reaction encoding, 

even as the spatial encoding itself is insufficient. 

2. Would the model perform faster than explicit spatial information models? 

For this project, we have used ETKDG to generate our conformers. To compare the runtimes 

between explicit and implicit, we will use our test set containing 1682 reactions. In explicit spatial 

information models, these conformers must be generated at test time for them to be available as 

input. To generate the conformers for the entire test set, we take over 3 minutes. In running our 

final model, taking only the reaction SMILES as input, it takes only 3 seconds for the entire test 

set. In other words, this is a 60-fold improvement in runtime compared to using explicit spatial 

information. It is worth noting that ETKDG is already one of the faster conformer generation tools 

available. Our final model improves runtime by not requiring spatial information as input, using 

only implicit spatial information to help with its predictions. 

Future Work 



   

 

 

   

 

For our project, conformers were generated rather quickly using the ETKDG algorithm. However, 

more accurate and time-consuming methods of generating conformers could be employed, without 

a trade-off in speed for our model. One such method of recent interest is Torsional Diffusion [9], 

shown to be more accurate, while still offering high speeds. Using more accurate conformers 

would allow the spatial model to model the actual spatial data more accurately, resulting in higher 

quality encodings, giving more accurate activation energy predictions. 

Bond angle of the reactants could be a factor within the model to predict activation energy more 

accurately. For example, the reaction between cyclopropane and bromine has a lower activation 

energy compared to propane and bromine. This is as the removal of the ring strain in cyclopropane 

via reaction with bromine is highly favorable, resulting in a lower activation energy. Using bond 

angles would hence allow us to predict activation energy more accurately for reactions, especially 

those containing molecules with many small rings. 

Activation energy predictions on datasets with larger molecules could also be explored. Explicit 

models find it difficult to scale up for larger molecules, since time taken for conformer generation 

increases greatly for more molecules. In contrast, we generate the conformers only during training, 

making it faster for the end user to predict using the model. 

Conclusion 

We have proposed an activation energy prediction model that accounts for spatial information 

implicitly. This model is 1. able to outperform state-of-the-art models with 2. lesser computation 

time as compared to models using explicit spatial information. 
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Appendix 

Parameter Details 

Conformer Generation 

To generate the conformers using ETKDG, we followed recommended parameters in [10]. We 

chose the number of conformers to generate for each molecule based on the formula below, 

featured in [10]: 

https://github.com/hesther/reactiondatabase
https://github.com/chemprop/chemprop
http://www.rdkit.org/UGM/2012/Ebejer_20110926_RDKit_1stUGM.pdf


   

 

 

   

 

 

where nrot represents the number of rotatable bonds for the molecule that conformers is being 

generated for. As for the pruning threshold, we chose it to be: 

 

This is based on the linear regression of the graph of number of rotatable bond against the 

average minimum RMSD from crystallographic conformation found in [10]. 

Reaction Model 

We train the reaction model on 100 epochs, using the reaction setting in chemprop [8], so that it 

can accept reactions. For the features used, we use the default features accepted by chemprop. 

For the reaction mode used, we used the setting to take the difference between the products and 

the reactants as input to feed into the model (prod_diff). The reasoning is that activation energy 

is largely affected by atoms and bonds that are targeted during the reaction and not as much by 

atoms and bonds that remain unchanged throughout the reaction. By using prod_diff, we give 

higher weightage to the atoms and bonds that are being changed, since we are taking their 

difference before and after the reaction. This would lead to the model being more able to deduce, 

as it does not have to infer which atoms and bonds are the most important when considering the 

activation energy. The loss function used is root mean square error. Other model parameters 

were set to default, using the parameters suggested in the original paper in [2]. 

Spatial Model 

The parameters for the reaction and spatial model are the same, except for the input features. For 

the input features to the spatial model, we use the condensed graph of reaction representation for 

the distance matrix for atoms, atomic number, bond length and bond type. 

Contrastive Learning 



   

 

 

   

 

We train both models contrastively for 100 epochs. For the reaction mode used, we used the 

setting to take the difference between the products and the reactants as input to feed into the 

model (prod_diff) for a similar reason as above. The loss function used is NTXloss. In NTXloss, 

τ is a temperature parameter, we set τ = 0.1, using the finding from [3] that and τ = 0.1 worked 

best. Our linear layer output size is 256, to make the same as the encoding size in [3]. 

Final Model 

We train this model similarly to the reaction model for 100 epochs. The only difference between 

training the reaction model and the final model is that the final model initializes the weights from 

the augmented reaction encoder from the contrastive learning. This is opposed to the reaction 

model, where the encoder is trained from scratch and initialized using random weights. The final 

model also uses the reaction setting, with prod_diff as the reaction mode, with a similar 

reasoning to the reaction and spatial models. 

Additional Results 

Training models without filtering 

We use the same test set of 1682 reactions that was used for in Results and Discussions. We test 

four models. We test the reaction and final models, with and without filtering reaction SMILES 

for which conformers could not be generated for. Refer to figure 3. The difference in training 

without filtering reaction SMILES would be the input to the reaction and final models.  



   

 

 

   

 

 

Figure 3: Diagram of the training process without filtering reaction SMILES for which 

conformers could not be generated for 

We compare them on two metrics, mean absolute error (MAE) and root-mean squared error 

(RMSE). 

 Reaction Model 

with filtering 

Final Model 

with filtering 

Reaction Model 

without filtering  

Final Model 

without filtering 

MAE 6.11 6.02 5.82 5.86 

RMSE 9.56 9.46 9.16 9.16 

Table 3: A comparison of the performances of the various models with and without filtering. 

Our final model with filtering seems to perform worse than the reaction model without filtering. 

This could possibly be due to the greater availability of data from which the reaction model 

without filtering could learn from over the final model with filtering. Additionally, it also seems 

that the final model without filtering does worse than the reaction model without filtering. One 

possible hypothesis is that the contrastive learning step causes the encoder to “un-learn” the 

proper encoding of certain reactions that conformers could not be generated for. For example, 

reactions containing boron could be negatively impacted by the contrastive learning, as they 



   

 

 

   

 

would not be accounted for during the contrastive step. As a result, their encodings would 

contain less essential information about them, leading to a worse outcome. 


