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Abstract. In this project, we define and explore the problem of reconstructing augmented binary trees. We 

provide two algorithms which allow an adversary to infer random identifiers associated to leaf nodes of such a 

tree from information about groups of nodes associated to “covers” of leaf node ranges. We conclude by linking 

these algorithms to adversarial attacks on range searchable encryption, a cryptographic scheme used to make 

range queries to outsourced data on untrusted Cloud storage providers, thereby demonstrating the practical 

uses of our work in the security evaluation of such schemes. 

 

1 Introduction 

In graph theory, tree graphs are the subject of many interesting algorithms with far reaching 

applications. In this work, we focus our effort on fixed-depth augmented binary tree graph and 

define the new algorithmic problem of “reconstructing” such trees from “node queries”. 

More concretely, an augmented binary tree adds new nodes to the intermediate levels of 

a complete binary tree. These nodes have no parents and have two consecutive children in 

the layer below who do not have a common parent in the binary tree. The problem we define 

assumes that a unique random identifier is assigned to each leaf node which is unknown to 

the adversary. By observing node queries to this tree, the adversary gains information about 

which identifiers are associated to descendants of particular nodes. The adversary then tries to 

make inferences from a series of such queries about the identifier of each leaf node, thereby 

reconstructing the tree. In our work, we provide two algorithms to address this reconstruction 

problem, and do a mathematical and experimental analysis of them. 

This seemingly random problem has a direct application in the security evaluation of Range 

Searchable Encryption (RSE), a type of cryptographic scheme used for outsourcing a database, 

and the processing of range queries to said database to an untrusted Cloud server. 

Our problem statement and algorithms can be applied by an eavesdropper adversary (e.g. 

a nosy Cloud administrator) on real-world RSE encryption schemes [1, 2] to try to glean in- 

formation about sensitive stored data, in spite of end-to-end encryption applied by the client. 

However, depending on the RSE application’s characteristics, such as frequency of queries and 

distribution of data, the success rate of such an adversary may differ greatly. As such, our al- 

gorithms are impactful as they can be used in the security analysis of real-world cryptographic 

schemes, and understand better their practical security in realistic use-cases. 

 
1.1 Our Contributions 

Our main research contributions can be summarized as such: 

– We designed an algorithm which incrementally reconstructs the tree from the inferences 

that can be drawn from adjacent nodes. We call this the Recursive Neighbour Search (RNS) 

algorithm. We demonstrate that this algorithm is only a heuristic, as there are a family of 

inferences that it is unable to draw from these adjacency rules, so the algorithm output is 

suboptimal. 
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– We then provide another, completely distinct algorithm for the same problem, which only 

makes one pass across the leaf nodes and exploits union and intersection properties of the 

queries made. We call this the One-pass Union-Intersection Search and it is optimal. 

– We implemented both algorithms in Python, then ran simulations to test for accuracy and 

time, concluding that the One-pass algorithm is both more accurate (owing to its optimality) 

and more efficient than RNS. 

– We applied our problem to the cryptanalysis of RSE, and demonstrated the potential impact 

of our research in the security evaluation of RSE schemes. People who use RSE can use 

our algorithms to stress-test their implementations, better understand their security against 

realistic adversaries in different settings. 

 
2 Augmented Binary Tree Definition 

Binary trees are hierarchical data structures with nodes, with two children nodes per parent 

node, connected by lines defined as edges. Every node has a maximum of two children nodes, 

with nodes higher on the tree labelled as parent nodes and the nodes at the final depth being 

leaf nodes. Leaf nodes have no children nodes, signifying a termination of the binary tree. In 

our notation, we label the topmost node as node 1, and notate the rest of the nodes numerically, 

horizontally from left to right, up to down. Every node x has two children nodes 2x and 2x + 1. 

For example, in Figure 1 node 2 has children 4 and 5. 

We define the depth of the tree as d, the number of “rows” in the tree, ignoring the root, and 

the depth of a node x as the length dx of the minimal path between it and the root. Note that 

depth d of a tree contains the nodes from 2d to 2d-1. For example, the depth of node 5 in Figure 

1 is 2. 
 

 

 

Fig. 1. A diagram of a complete binary tree with depth d = 3. 

 

 

Our research studies augmented binary trees, which modifies the above by adding new 

“augmented” nodes. These nodes are denoted with decimal number of the form i + 0.5 (for 

integer i) and are added “between” the nodes i and i + 1, for all i except those of the form 

i = 2d 1 for all integers d. The children of each such node are the two integer nodes “below” 

it with no common parent. Figure 2 illustrates the analogous augmented binary tree for d = 3. 

In this whole paper, we will be dealing with augmented binary trees, as our reconstruction 

problem will be centred upon the nature of augmented binary trees. 

 
2.1 Covers 

Another large aspect of the project is the term of range covers. A cover of a range (a, b) 
is defined as the set of nodes, where the union of the descendent leaf nodes is exactly the set 

of leaves {a, a + 1, . . . , b}. As the term might insinuate, the set of nodes must ”cover” all of 
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Fig. 2. A diagram of an augmented binary tree at depth d = 3 

 
 

the range that is required, by ensuring that the descendent leaf nodes of each node in the set of 

nodes are all within the range. 

We say that C, a subset of the nodes in an augmented binary tree is a cover of range [a,b] if 

{n’| n’ is a leaf descendent of n} = {a, . . . , b} 
n ⊆ C 

While a range might have multiple covers, applications minimize bandwidth by preferring 

the minimal one (i.e. the one with the least nodes). For example, in figure 2, the range [8,12] 

has minimal cover  2,12 , as node 2 has descendent leaf nodes 8 to 11, and the final node 12 is 

to finish covering the last section of the range, which is 12. 

 
3 Reconstruction Problem 

Now, we will discuss the actual problem of reconstruction. To a full and complete depth 

d augmented binary tree, we randomly assign 2d unique identifiers (notated as capital-letter 

alphabets) to the leaf nodes of the tree (e.g. node 4 is mapped to B). We define a query on a 

node as a tuple (x, P), where x is the node number and P is the set of the unique identifiers 

associated to the descendent leafs of that node, i.e. querying node 2 gives us (2, A, B ). As 

such, our problem is to design an algorithm that when inputted a depth d and q queries, e.g. 

(n1, P1), the output should be the list of as many leaf nodes and their identifiers as possible 

computed based on the queries given. 

E.g., in Figure 2, given node 5 and 5.5, with identifiers H,I and H,K respectively, a way 

an algorithm can work is to recognise that 5 and 5.5 share a child 11 and deduce information 

about the identifier of leaf node 11 which may not be queried, hence the identifier of 11 should 

be {H}, which is the intersection of identifiers of 5 and 5.5. Thus, the algorithm can have an 

input of 5 and 5.5 and their respective identifiers, with an output of (11, {H}). 
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3.1 Recursive Neighbour Search Algorithm (RNS) 

The intuition behind our first algorithm is to incrementally draw inferences about nodes in 

the tree via simple equations, gradually reconstructing the whole tree. Our equations all relate 

to how each node is associated to its neighbours, in hope that these inferences will coalesce 

into inferences about the entire tree. To better understand the algorithm, We describe these 

equations then discuss how to extend this toa reconstruction algorithm. 

SHARED CHILD EQUATION In an ordinary binary tree, each node has a single parent. However, 

in an augmented binary tree, nodes are now able to have two parents, due to the existence of 

augmented nodes. Thus, it can be concluded that for every two parent nodes x and x + 0.5 

who share the same child 2x + 1, P2x+1 = Px Px+0.5, as x and x + 0.5 both cover the same 

identifiers of the shared child. Referring to Figure 2, if the algorithm was given two nodes 5 
and 5.5, e.g. 5 : A, B and 5.5 : B, D  , our algorithm will determine that node 11 will 

contain the intersection of the identifiers from its two parent nodes, and our algorithm will 

update nodedictionary with 11 : B . It is important to note that this equation is the basis of 

the 2nd algorithm, which we will go into further detail in Section 3.3. 

SHARED PARENT EQUATION (ONE CHILD ONE PARENT) As every two nodes share a parent, 

logically, all identifiers from the parent include the identifiers of both children. Hence, when 

the identifiers from one parent and one child are known, we are able to compute the identifiers 

of the other child. Mathematically, this is depicted as P2x = Px P2x+1. Referring to Figure 2, 

if the algorithm was given two nodes 5 and 11, e.g. 5 :    E, F    and 11 :    E , the algorithm 

will use the identifiers of the parent node to subtract the set of identifiers of the child node, 

computing that node 10 has identifiers {F}. 

SHARED PARENT EQUATION (TWO CHILDREN) Similar to the previous equation, due to the 
fact that both of the children’s identifiers added up equals to the identifiers of the parent node, 

mathematically, Px = P2x ∪ P2x+1. Referring to Figure 2, if given nodes 14 and 15 and their 

respective identifiers {W} and {Y}, the algorithm is able to infer that node 7 has identifiers 

{W,Y} by adding the identifiers of both its children. 

EXTENDING EQUATIONS TO RNS The algorithm repeatedly searches the tree for relations be- 

tween nodes, using a node’s descendant leaves’ identifiers to infer its neighbours’ identifiers. 

Our algorithm is built around these three equations representing these inferences. Using these 

three equations, the algorithm repeatedly scans the tree for any scenarios where these equations 

can be applied, then modifies the tree by updating new nodes which can be computed from the 

equations. With these new nodes and information, the algorithm can in turn infer more about 

the neighbours, and repeats until no further nodes can be computed. The details of this algo- 

rithm can be found in the appendix A, with the detailed pseudocode. Uses dictionary to keep 

track of inputted nodes 

The final step entails the extraction of all depth d 1 nodes and their subsequent identifiers, 

by measuring the length of all P in the dictionary and outputting all P of length 2. 

MATHEMATICAL ANALYSIS OF RNS Algorithms usually are described as optimal, or heuris- 

tic. We refer to optimal algorithms as always returning the correct answers and algorithms that 

do not meet this criteria as heuristic. Returning to our algorithm, it has a limitation of a certain 

specific edge cases which we observed in Figure 3. From the figure, we can observe that for 

the first case, assuming the algorithm is given the nodes 4, 1, 2.5, similar to the shared parent 

equation (one child, one parent), this case can be treated as one parent, two children. Node 1 is 

the parent, and one can deduce that the identifiers in 1 which are not in 4, 2.5, must be in node 7. 

However, due to the infinite number of these edge cases, our algorithm is unfortunately unable 
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to account for all of these cases, making this algorithm a heuristic and approximate algorithm, 

instead of the optimal one we desire. Thus, we attempted to create a second algorithm which 

we could define as optimal. 
 
 

 

Fig. 3. Example edge cases demonstrating that RNS is a heuristic algorithm 

 

 
 

3.2 One-pass Union-Intersection Search Algorithm 

Next, we discuss the details of our second algorithm, which we construct due to the fact 

that RNS is not optimal. Our aim is to design an algorithm which is optimal, and we attempt to 

design one that is more efficient than RNS, to find the best solution to our problem. Our next 

algorithm is called the One-pass Union-Intersection Search Algorithm as it exploits certain 

properties of nodes. 

Firstly, x is descendent of y if there exists a series of nodes connected by edges who are 

parents of each other up until y. z is ancestor of y if there exists a series of nodes connected by 

edges who are children of each other up to y. Secondly, every leaf node’s identifier appears in 

all of its ancestor nodes’ identifiers, and also does not appear in any of its non-ancestor nodes’ 

identifiers 

The main intuition behind this algorithm is that every child node has more than one ancestor 

which cover the node. This would mean that all we require is to find the intersection of all 

identifiers belonging to these nodes and subtract the union of all identifiers belonging to nodes 

that do not cover the specified node. The intersection of identifiers of parents of a specified node 

would return the identifiers of that specified node. Hence, expanding this to the whole tree, 

searching the tree for as many ancestor nodes of the specified node and taking their intersection 

would return a set which contain the identifiers of the specified node, but yet may also contain 

other identifiers which are not in the specified node, if the ancestor nodes selected are too 

high in the tree. This is because nodes which are higher on the tree contain more identifiers 

than those lower on the tree. Thus, subtracting the identifiers of nodes which do not cover the 

specified node are important as well to obtain solely the identifiers of the specified node. The 

mathematical equation is as follows: 

Px = 
\ 

Pn \ 
[ 

Pn 

For each leaf node, we register all the higher nodes which cover each leaf node, which we 
can denote as a set I where lI again refers to the length of set I. In addition, all nodes which do 

not cover the specified leaf node can be denoted as set U, and the length of set U as lU . 
To provide an example, referring to Figure 2, we observe node 10. It has an augmented 

node parent 4.5 as well as other nodes which covers node 10, which are 5, 2, 2.5, 1. The algo- 

rithm would note the nodes provided, which e.g. could be [2, 2.5]. As such, to calculate P10, the 



6 
 

\ 

− 

− 

− 

− 

algorithm would find the intersection of P2 and P2.5, which are P5. However, we require P10 
instead, but the algorithm does not end here, continuing instead, which takes the intersection of 

identifiers and conducts a set subtraction of the intersection and union of all other nodes which 

are given and not covering node 10. E.g. we are also given node 5.5. Thus, the algorithm com- 

putes the intersection of identifiers, which is P5, and then computes P5     P5.5, hence obtaining 

a subtraction of P11, giving P10 as the final solution. 

One of the main reasons why this algorithm is so favourable is due to the fact that the time 

taken to run this program at a fixed depth d is constant for as many numbers of queries, as 

the program repeats for 2d times no matter the number of queries given. It also makes use of 

a lookup table to efficiently store ancestor nodes of every leaf node, as well as nodes that are 

non-ancestors. 

In conclusion, this algorithm allows inputs of similar parameters to the previous algorithm 

and outputs depth d 1 identifiers, and it is optimal due to the fact that it scans the whole tree, 

using all available information to deduce each node’s identifiers. 

 
4 Methodology 

Firstly, we discuss how we implement our algorithms and how we extract data from experi- 

ments done. Our main implementation was done through programming, where we program our 

algorithms and test for the time taken, as well as how various factors affect the success rate. 

Although mapping each leaf node to the correct file is most important, we instead define our 

success rate to be the percentage of nodes at depth d 1 which were reconstructed instead 

of depth d. This factor was chosen because ranges are inputted into the algorithm instead of 

actual nodes, the probability of receiving depth d augmented nodes is rather small, with only 

depth d regular nodes being returned, which limits the orderings of identifiers to two different 

possibilities. Thus, unfortunately, with this limitation, our only option is to test for depth d 1 
nodes. As such, our research would be discussing how various factors affect the percentage 

reconstructed. 

Using the Python random module, we are able to construct a function which generates 

identifiers, append them into a list, and shuffles the items of the list using the random module. 

Next, identifiers are mapped to each leaf node, and stored in an ”answer key” list, to check the 

program’s accuracy. Ranges are randomly generated as well using Python’s randint function 

with replacement, where two integers are randomly generated and both are used for the inputted 

ranges and subsequent nodes from the cover of the range were used to be inputted in the two 

algorithms. As such, querying a range will lead to a computed cover, consisting of a set of 

nodes, and these nodes and their subsequent identifiers are inputted into the algorithm through a 

Python dictionary, labelled as nodedictionary. Items in the nodedictionary are notated as n : P , 

where n is the node number, and Pn is the set of identifiers covered by n in the form of a list. 

In addition, we constructed a program named pair, which calculates the minimum cover 

based on the randomly generated ranges. Both programs have the same setup. 

 
5 Results 

5.1 Overview 

In order to obtain our results from the Python programs, we used for loops to repeat 

the algorithm with increasing depth number to investigate its effect on the percentage of depth 

d−1 nodes reconstructed, as well as investigate the relationship between number of queries and 
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percentage reconstructed. Regarding these experiments, since both algorithms are fundamen- 

tally similar, for simplicity, all our data from this section were generated from the Recursive 

Neighbour Search Algorithm. However, when comparing the two algorithms by testing for time 

taken, both algorithms were experimented upon. 

All our graphs were plotted either with Python’s matplotlib.pyplot module or with charts in 

Google Sheets. 

 
5.2 Overall Statistics 

Looking at all iterations of both algorithms, the percentage of iterations which resulted in 

100% reconstruction of depth d    1 nodes is almost 0, but both our algorithms are successful 

in inferring more nodes from the queries provided. Detailed statistics will be analysed and 

evaluated in the next few sections. 

 
5.3 Effect of Depth Number 

 

 
 

 

Fig. 4. Graph of percentage reconstructed (%) against depth number at fixed query number 

 
 

From the graph (Figure 4), the trend is rather distinct, which is that at smaller depths, from 

1-5, 100% of depth d 1 nodes were reconstructed, and it decreases rather swiftly as depth 

increases. The reason being is that due to a fixed number of queries of around 250, since 2d 
from d = 1 to d = 5 is under 250, the probability of obtaining unique queries greater than 2d is 

higher. However, there is a sharp decrease because the number of nodes in the tree is increasing 

exponentially, thus the same number of queries is inadequate to provide the same amount of 

information at increasing d. 

 
5.4 Effect of Number of Queries 

Next, we investigate the effect of the number of queries inputted to the algorithm and how 

it affects the success rate of the algorithm. We decided to plot our results on a scatter chart and 

it demonstrated the results as seen in Figure 5, and we derived an equation which modelled this 

trend, which is y = 100(1 e−0.012456x). With this equation, it is not difficult to estimate the 

percentage of d     1 nodes reconstructed at a specific number of queries. Observing the scatter 

plot, it can be observed that as the number of queries inputted to the algorithm increases, the 

percentage reconstructed increases, but at a decreasing rate when the graph tends to 100% 
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reconstructed. We chose the values of d = 8 and 250 queries to allow a spread of data which 

showcases how the data points tend to be 100%. Originally, only 50 queries were utilised, 

which when observed from the graph, appeared to showcase a linear relationship, however, as 

one might observe from the graph, the graph ends up plateauing at approximately 150 queries. 

We believe that the reason this might be is due to the manner in which our setup is constructed. 

Queries are generated randomly with replacement, thus this scenario illustrates how with a 

greater number of queries, the number of novel unique queries inputted into the algorithm will 

decrease, as most unique queries have been accepted by the algorithm or have been computed 

thus far. 
 

 

 

Fig. 5. Graph of percentage reconstructed (%) against number of queries at a fixed depth of d = 8 

 

 

 

5.5 Time Comparison 

Our first metric for comparing the algorithms is their runtime. In Figure 6, we plot the 

average time taken for each algorithm as the number of nodes given as input increases. We see 

that both algorithms grow, but RNS has at a significantly faster rate than the one-pass algorithm. 

To explain this, note that RNS’ runtime is related to the number of queries since this deter- 

mines the number of adjacency relations that will be explored. For one-pass, each leaf node is 

computed from a similar equation whose efficiency does not degrade as much when the number 

of queries is increased. As such, we conclude that one-pass is more efficient, especially when 

there are a large number of queries. 

 
5.6 Accuracy Comparison 

Next, we compare the accuracy differences between the two algorithms. We define accuracy 

as our success rate, with that being the percentage reconstructed of depth d  1 nodes. We used 

a Python loop which increases the number of queries per iteration and computes the percentage 

reconstructed for each algorithm during that iteration. From Figure 7, it can be observed that the 

one-pass algorithm generally has higher accuracy than the recursive neighbour search for most 

iterations, as well as having a greater number of 100% reconstructions. This is unsurprising 

since RNS is heuristic while One-pass is optimal, and this experiment demonstrates that this 

suboptimality is significant in practice. 
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Fig. 6. Graph of time taken per algorithm against number of queries at a fixed depth of d = 8 

 
 

We note that this graph is similar to Figure 5, but with the results of both algorithms su- 

perimposed on the same grid, to accurately showcase the contrasts of accuracy between both 

algorithms. This also depicts the similarities in functionality and structure between the two al- 

gorithms, as both still produced similar trend-line and graph shapes. Thus, it can be observed 

how both algorithms are fundamentally the same, yet it is important to note that the speed and 

efficiency of both are not entirely the same. 

Next, we discuss the reasons behind this trend. The one-pass algorithm is more accurate due 

to the fact that it has no limitations in its structure. It computes all nodes, and thus would have 

no possibility of missing a case or a combination of nodes and would hence utilise all available 

information to compute the outputs, making it extremely efficient and comprehensive. 
 

 

 

Fig. 7. Graph of percentage reconstructed against number of queries at a fixed depth of d = 8 

 

 

 
6 Application to Cryptography 

Augmented binary trees are used in Range Searchable Encryption (RSE) schemes to out- 

source databases to the Cloud for storage and query processing. Suppose we have a doctor (our 

client) with a list of sensitive information (salary, hospital records etc.) arranged by age and 

wishes to outsource this data to Amazon Web Services. Suppose he later wants to make queries 
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to find patients within a range of ages (say 10-24), but does not want to either pass the server 

the key (because he does not trust it) nor download the whole database. To support such an 

application, one can use RSE to construct and encrypt an augmented binary tree, representing 

the files as leaves in the tree. Queries are supported by breaking down the query into a cover, 

then accessing those nodes in the RSE scheme to retrieve the associated files at the descendant 

leaves. The client then collects, decrypts and interprets these files as the query response. Some 

of these schemes in the literature make use of augmented binary trees to achieve this [1, 2]. 

In the process of using such a scheme, an adversary can observe the nodes queried and the 

encrypted files that are returned. In the application above, the adversary may be an eavesdropper 

on the network, or a nosy employee of Amazon. Since the files are encrypted, they cannot 

directly learn about the information in the file. However, by observing the nodes queried and the 

patterns of encrypted files, they can apply our algorithms to deduce the range value associated 

to each file, thereby “reconstructing” the binary tree. This is a form of a Leakage Abuse Attack, 

an wide area of research in the literature. 

First, he observes the queries, which as mentioned before are sets of nodes, then splits them 

into individual nodes and notes down the files associated with each node. This is where the 

adversary implements our algorithms, where input is [(n1), (P1), ..., (nq), (Pq)] and output is 

[ln, idn]n∈N , where N is the maximum subset of leaf nodes and identifiers that can be deduced 

from the input and N       2d, ..., 2d+1      1. This output essentially gives sensitive information 

about which file corresponds to which range value. 

 
7 Conclusion 

In conclusion, we have defined the new Augmented Binary Tree Reconstruction problem, 

and designed two algorithms to address it. We mathematically and experimentally evaluate 

these algorithms, showing that the less-intuitive one-pass algorithm is optimal and efficient 

while the more-straightforward RNS is only a heuristic and suffers from efficiency blowup. 

We then demonstrate a practical and impactful application of our algorithms in the security 

evaluation of RSE schemes deployed on untrusted Cloud servers. Future work could explore 

testing our algorithms on actual cryptography schemes, in order to conduct security evalua- 

tions of these schemes, or alternatively, future work could also explore alternate or optimized 

algorithms to solve this problem of reconstruction. 
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Alg RNS({n1, G1}...{nx, Gx}) 

Initialise dictionary T 

For i = 1...x: set T[ni] = Gi 

Set bool = True 

While (bool): 

Set bool = False 

For i = 1, 1.5, 2, 2.5 . . .  2d where T[i] is defined: 

If T[i+0.5] is defined: 

Set T[2i+1] = T[i] ∩ T[i+0.5] 

Set T[2i] = T[i] \ T[2i+1] 

Set T[2i+2] = T[i+0.5] \ T[2i+1] 

If T[i/2] is defined: 

Set T[i+1] = T[i/2] \ T[i] 

If T[i//2] is defined: 

Set T[i+1] = T[i//2] \ T[i] 

If i is even and T[i+1] is defined: 

Alg One − pass({n1, G1}...{nx, Gx}) 

Initialise dictionary T 

For i = 1...x: set T[ni] = Gi 

Initialise dictionary L 

 
For y in T: 

Compute Ky , where K is the set of descendent leaf 

nodes of node y. 

For c in Ky : 

Set L[c] += y 

Let the set of nodes not in L[x], where x is a node, be 

Nx 

For i = 2d ... 2d+1 − 1: 

Set T[i] to as follows 

\ 
T[n] \ 

n ⊆ Ni 

[ 
T[n] 

n ⊆ L[i] 

If T has changed in size, set bool = True 

Set T[i/2] = T[i] ∪ T[i+1] 
Append T[i] to list extracted files 

Output extracted files 

For i = 2d ... 2d+1 − 1, if T[i] is defined, append to list 

extracted files 

Output length of extracted files / 2d multiplied by 100 

to output percentage reconstructed 

Appendix 

A Pseudocode 

A.1 RNS and One-pass 

Below is our pseudocode for both algorithms, with RNS on the left, and the pseudocode for 

the one-pass algorithm on the right. 
 
 

Fig. 8. Pseudocode for both Algorithms 


