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ABSTRACT 

Structured encryption (STE) schemes allow search queries to be made on an encrypted dataset. 

The focus of our project is on volume-hiding encryption schemes, which are a subset of STE 

schemes where the same volume of data is returned for each search query, thus making the scheme 

more secure. By implementing novel algorithmic and cryptographic techniques, we improved upon 

4 encryption schemes1 from the literature in terms of their query bandwidth and storage. Our 

experimentation consists of 2 phases: Intra-scheme and inter-scheme comparisons. In the former, 

we enumerate the improvements on each scheme, and selected between them by comparing their 

tradeoffs in a few case studies, constructing an improved variant of each scheme. In the latter, we 

benchmark these new variants to evaluate tradeoffs between storage and query bandwidth. Thus, 

our work improves upon the current state-of-the-art with novel techniques and uniform 

benchmarking. Our work is impactful in practical use cases since our new schemes significantly 

improve storage and bandwidth, and we can firmly recommend our  Cuckoo Volume-Hiding 

(CVH) and Parametrized Volume-Hiding (PVH) variants as the most suitable schemes for Zipfian 

and linear datasets respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 introduced by Kamara, S., & Moataz, T. (2019), Patel, S., Persiano, G., Yeo, K., & Yung, M. 

(2019), Naveed, M., Prabhakaran, M., & Gunter, C. A. (2014), Chase, M., & Kamara, S. (2010) 
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1. INTRODUCTION 

Encryption has become increasingly important in a digital world that values privacy and 

convenience. To ensure the security of their confidential databases, clients encrypt their databases 

and store the encrypted data on an external cloud server, like Amazon Web Services and IBM 

Cloud. 
 

To make sure that the database can be queried after encryption, structured encryption (STE) 

schemes are used. When clients send queries to the server, the server will return the relevant data 

to clients (think of this as searching for a word on a document and being returned all instances of 

that word). However, data returned for each query may vary in length, leaking query volume in 

the process. To prevent this leakage, volume-hiding (VH) structured encryption schemes are 

used instead, where the same amount of information is returned for every query. This increases 

security as this method does not reveal the actual amount of information for each query, and 

prevents adversaries from running leakage abuse attacks (LAAs) on the encrypted data. Existing 

literature has introduced several volume-hiding encryption schemes: Naive VH (NVH) [KM19], 

Graph VH (GVH) [NPG14], Bucket VH (BVH) [KM19] and Cuckoo VH (CVH) [PPYY19].  

 

1.1 Our contributions 

In this project, we optimized existing schemes in literature and compared the improved encryption 

schemes in terms of their security and storage. Our novel contributions are -  

1. Creating new variants of each existing scheme via novel cryptographic techniques to 

improve schemes’ memory and query bandwidth 

2. Comparison between improved schemes and recommendations for practical use cases  

Our project has successfully improved the existing VH encryption schemes - the improvements 

introduced have significantly reduced the query bandwidth and storage size of the encrypted data 

structure (EDS). All the improved schemes are equally secure, but each has a different trade-off in 

query bandwidth and storage size. Our comparison of the new schemes is also the first of its kind: 

we found that our improved Parametrized VH (PVH) and CVH schemes work best for linear 

and Zipfian datasets respectively. 

 

 

2. BACKGROUND 

We aim to encrypt dictionaries since it is an important data structure used in many large-scale 

systems. Dictionaries are a collection of label-value pairs: they create associations between a label 

L and value v (see Appendix 1 for more details). Structured encryption (STE) schemes encrypt 

data such that queries can be made. When a dataset is encrypted, total volume of the dataset is 

leaked. When queries are made, query volume and query equality is leaked (see Appendix 1 for 

more details). In particular, query volume leakage is the leakage of frequency information when 

queries are made; this occurs as the length of the value returned for each query is indicative of the 

length of the value stored. By using volume-hiding, we return a same-length value regardless of 

what label is queried. This eliminates query volume leakage, resulting in a more secure scheme.  
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3. INTRA-SCHEME IMPROVEMENTS: DESIGN & EXPERIMENTATION 

 

3.1 Methodology 

In this section, we employ a consistent approach to design improved STE schemes: (1) introduce 

the existing scheme from literature; (2) enumerate novel improvements we considered and; (3) 

explain choice of improvements via simulation data. For (2), improvements may either be technical 

improvements or encoding techniques. An example dataset (Fig 2) will be used. 

L1 v1||v2||v3 The schemes were implemented in Python using the following 

primitives: HMAC-SHA256 to hash labels and AES-CTR-128 to 

encrypt the values. For clarity, this encryption is left implicit in 

diagrams and descriptions. For more details on the implementation of 

the schemes, please refer to Appendix 2. 

L2 v4||v5 

L3 v6 

Fig 2: Unencrypted Dictionary 

 

In-keeping with the literature, our analysis of VH STE involves optimising two metrics:  

 

(1) Storage of the encrypted data structure (EDS) refers to the total size of the EDS. We aim to 

minimize the storage size of the EDS. In order to hide query volumes, volume-hiding encryption 

schemes employ significant padding and are thus less efficient in memory and bandwidth. often 

result in larger memory sizes as values have to be padded to a fixed maximum length to conceal 

the true length of the values from the eavesdropper adversary. In the real world, many databases 

are extremely large, and the cost of storing data on external cloud servers would increase with 

increasing memory of the EDS.  

(2) Query bandwidth refers to the size of the data returned to the client by the server when the 

client queries a particular label. We aim to minimize the query bandwidth - the greater the query 

bandwidth, the greater the amount of and the more time-consuming decryption work that the client 

has to do after receiving the data.  

An additional peculiarity of STE schemes is that encryption may sometimes fail. In our work, we 

make this a controlled variable as real-world use-cases cannot tolerate wide ranges of failure rates.  
 

Intra-scheme experimentation was done on a single dataset whose query length follow a Zipfian 

distribution.  
 

 

Fig 3: Summary of  the 

results of our 

improvements  

A negative percentage is 

preferred as it demonstrates 

a reduction in storage and 

query bandwidth. 
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3.2 Naive VH to Parametrized VH (NVH to PVH) 

NVH is parametrized by integer m, the length to pad each query to. This is illustrated in Fig 4.  

L1 v1||v2||v3||pad Fig 4: NVH EDS stored on server 

NVH stores each label with all 

values associated to it, and is 

volume-hiding since m bits is 

returned for all queries.  

L2 v4||v5||pad 

L3 v6||pad 

 

 

(1) Parametrization (Technical improvement) 

Our first improvement is to add a new parameter, h, to which all hashes (encrypted labels) are 

truncated to. When hashes collide, we store the values of both labels alongside each other, and 

employ padding as in NVH. To eliminate false positives when a query is made, we “encode” the 

values by storing its label alongside. An example is shown in Fig 5.  

L1.truncate(h) L1||v1||L1||v2||L1||v3||pad Fig 5: PVH EDS stored on server 

x.truncate(h) means that x has 

been truncated to h bits. 
L2.truncate(h) = L3.truncate(h) L2||v4||L2||v5||L3||v6||pad 

 

(2) Recording number of bits in values (Encoding technique) 

Instead of appending a label to the start of every value, we append only one of each label, followed 

by the number of bits in its corresponding values. For example, Fig 5, the value corresponding to 

truncated L2/L3 would be “L2||[length of v4+v5]||v4||v5||L3||[length of v6]||v6”.  

 

(3) Storing the start and end position (Encoding technique) 

For each label, the first index of its first value and the last index of its last value is stored in an 

alternate data structure on the server (e.g. [0,1] for L2 in Fig 5).  

 

3.2.1 Choice of improvements 

We define the parametrized volume-hiding (PVH) scheme to use our “parametrization” and 

“recording number of bits in values” improvements. “Parametrization” results in a reduction in 

storage by 72.2% and an increase in query bandwidth by 49.5% from NVH. Since the reduction 

outweighs the increase, “parametrization” results in overall improvement. “Recording number of 

bits in values” causes storage and query bandwidth to decrease by the largest percentage (23%), 

as it does not require an alternate data structure and labels are not repeated.  

 

3.3 Graph VH to new Graph VH (GVH to new GVH) 

The GVH scheme2 works by associating labels with array indices. The array has g indices and 

each label is assigned to a subset of t indices. Labels are pseudorandomly assigned to indices, and 

values are stored at those indices via greedy allocation (i.e. values for a given are assigned to the 

first empty adjacent indices).  

 

 

 
2 introduced by Kamara, S., & Moataz, T. (2019) 
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(1) Maximum bipartite matching (Technical improvement) 

Instead of greedily assigning indices, maximum bipartite matching will ensure an optimal 

assignment to minimize failure rate. We express the pseudorandom assignment with bipartite 

graph B and employ a graph matching algorithm to derive a matching M which is used to allocate 

values to indices.  An example case, where g=7 and t=3, is shown in Fig 6 and Fig 7. 

 

  

When L1 is queried, indices 

1, 2 and 3 are returned. t 

edges are returned for every 

label queried, thus making 

the scheme volume-hiding. 

Fig 6: Bipartite graph B Fig 7: Optimal Graph matching M 

 

(2) Storing counters (Encoding technique) 

Counters for the used edges are stored in an alternate data structure that is padded to be volume-

hiding. In the case of Fig 7, we store L1::[1||2||3], L2::[2||3||pad] and L3::[2||pad]. 

 

(3) Storing used edges (Encoding technique) 

Used edges are stored in an alternate data structure that is padded to be volume-hiding. In the case 

of Fig 7, we store L1::[1||2||3], L2::[4||5||pad] and L3::[6||pad]. 

 

(4) Bitmap for used edge (Encoding technique) 

A bitmap is stored for each label in an alternate data structure. Each bitmap has a bit for each 

assigned index which is set to “1” if and only if the edge is used in the matching In the case of Fig 

7, we store L1::[1,1,1,0,0,0,0], L2::[0,0,0,1,1,0,0] and L3::[0,0,0,0,0,1,0]. 

 

(5) Frog-hopping (Encoding technique) 

Like a linked-list, each value is accompanied by a pointer informing how many places ahead the 

next value is. A prepended bit is used to distinguish each list’s “head” from all other values. 

 

3.3.1 Choice of improvements 

Our new GVH scheme uses the “maximum bipartite matching” and “storing counters” 

improvements. Maximum bipartite matching is strictly better than greedy matching since it is 

optimal - using maximum bipartite matching decreases storage size by 4.7% and query bandwidth 

by 78.6%. “Storing counters” is chosen as it results in the largest decrease in storage from the 

“naive” method (4.7%), though query bandwidth increases (68.1%). 

 

3.4 Bucket VH to new Bucket VH (BVH to new BVH) 

In BVH, there exists n buckets, each of size m (padding is needed if size<m). Each label is 

allocated slots in t buckets where values are stored. Each query returns all values in t buckets. 
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Fig 8: Unencrypted 

dictionary 

Fig 9: Allocation of slots in buckets (n=4, m=3 and 

t=3) 

Fig 10: BVH EDS stored on 

server 

 

(1) Modified bitmap (Encoding technique) 

The modified bitmap stores the position of each value in a bucket and “-1” if the value is not in 

the bucket. In the above example, the bitmap contains L1::[1,1,1], L2::[2,2,0] and L3::[2,0,0]. 
 

(2) Frog-hopping (Encoding technique) 

 
Similar to 3.3.5, but each stored value is instead accompanied by two pointers informing how 

many buckets and positions ahead the next value is.  

 

3.4.1 Choice of improvements 

Our new BVH scheme employs the “frog-hopping” improvement. It is the best encoding since it 

does not require the use of an alternate data structure, reducing storage size by 6.3%.  

 

3.5 Cuckoo VH to new Cuckoo VH (CVH to new CVH)  

In PPYY19, CVH uses a cuckoo data structure (refer to Appendix 2 for more information) to store 

data. In this cuckoo data structure, there are n rows, and the maximum size of the stash is S. 

 

(1) 3-bit map (Encoding technique) 

“0” is stored if the value is found in the left column, “1” if the value is found in the right column 

and the index if the value is found in the stash.  

 

3.5.1 Choice of improvements 

Our new CVH scheme employs the “3-bit map” improvement. It is the best encoding since it 

results in 9.6% decrease in storage and 19.0% decrease in query bandwidth. 
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3.6 Summary of results 

All the new schemes result in substantial savings in storage and/or query bandwidth due to 

technical improvements and encoding techniques (Fig 3). Moving forward, when we conduct the 

inter-scheme comparison, we will be using the improved schemes. 

 

4. INTER-SCHEME BENCHMARKING 

 

4.1 Metrics for inter-scheme comparison 

Important metrics in comparing volume-hiding schemes are failure rate, security, storage and 

query bandwidth. By the definition of volume-hiding schemes, it is noted that each scheme has the 

same security since the information leaked is the same. As discussed in section 2, all VH schemes 

carry an inherent failure probability (e.g. in PVH, all labels could hash to the same value). To keep 

this (relatively) constant, we select parameters which keep failure below 5% in all experiments.  

 

This leaves storage size and query bandwidth as metrics to be evaluated. The schemes were 

compared on different artificially-generated datasets to compare the tradeoffs between these two 

metrics, with varying (1) number of labels, (2) total length of labels, and (3) distribution of data. 

The distribution of data follows either a Zipfian (value length increases exponentially - refer to 

Appendix 4) or linear distribution (value length increases linearly). NVH is used as a benchmark. 

 

 

Fig 12:  Storage for Zipfian datasets 
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Fig 13: Query bandwidth for Zipfian datasets 

 

Fig 14: Storage for Linear datasets 
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Fig 15: Query bandwidth for Linear datasets 

 

 

4.2 Storage size 

4.2.1 Zipfian dataset 

Storage of EDS decreases from NVH to PVH to BVH to GVH to CVH (Fig 12). 

 

(a) The storage size of NVH is the largest as a large amount of padding is required to pad the 

shorter values to the same maximum length in a Zipfian dataset. The storage size of PVH is 

significantly smaller as the labels could collide such that shorter values are concatenated and less 

padding is needed, but there is still a small chance that labels collide such that the longest values 

are concatenated and more padding is required. 

(b) The storage size of BVH is smaller than that of PVH since the number of buckets can be 

increased, reducing the number of values in each bucket and thus padding for each bucket, but the 

storage size of GVH is smaller than that of BVH since parameters are more easily controlled. 

(c) The storage size of CVH is the smallest, as the EDS in CVH is a cuckoo data structure which 

takes up less storage compared to other encryption schemes that use a dictionary. 

 

4.2.2. Linear dataset 

Storage of EDS decreases from BVH to GVH to CVH to NVH to PVH (Fig 14). We note that 

NVH and PVH perform much better for the linear dataset than the Zipfian dataset. This is 

because much less padding is required for NVH. For PVH, the collision of the largest values will 

not result in a significantly larger value, hence lowering storage. 
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4.3 Query Bandwidth 

For Zipfian datasets, the query bandwidth of the EDS decreases from BVH to CVH to GVH to 

PVH to NVH (Fig 13). For linear datasets, the query bandwidth of the EDS decreases from BVH 

to CVH to PVH to GVH to NVH (Fig 15). 

 

(a) The query bandwidth of BVH is the highest as many values in different buckets are returned. 

(b) The query bandwidth of CVH is slightly lower. Although the entire stash is returned for each 

query, there are less values in the rows being returned than the values in buckets returned for BVH. 

(c) The query bandwidth of GVH is lower than that of CVH. The assignment of values to 

indices is optimised in GVH so fewer indices have to be returned, but this is not the case for CVH 

as it returns at least double the size of the maximum value due to CVH returning 2 columns and a 

stash. 

(d) The query bandwidth for GVH is lower than that of PVH for linear datasets but higher 

for Zipfian datasets since the length of the maximum value is not large relative to the size of the 

linear dataset but the opposite is true for Zipfian datasets. Thus, more array indices need to be 

returned for GVH for Zipfian datasets and it has a larger query bandwidth. 

(e) However, the query bandwidth of PVH is larger than NVH as the longest concatenated 

value length in PVH is mostly always longer than the longest value length in NVH. 

 

4.4 Takeaways  

There is a trade-off between storage size of the EDS and query bandwidth - from our experiments, 

there is no way to minimise both metrics at the same time. This is intuitive since NVH would be 

used if lower query bandwidth is desired, but it has the highest storage, and storage could be 

minimised by encrypting all values as a single block, but the entire database has to be returned 

each time a query is made. From our results, PVH should be used for linear datasets while CVH 

should be used for Zipfian datasets as storage savings are substantial while increase in query 

bandwidth is insignificant.  

 

 

5. CONCLUSION 

5.1 Summary 

We considered 4 existing schemes in literature: NVH, GVH, CVH and BVH. We then introduced 

a variety of technical improvements and encoding techniques to improve the query bandwidth and 

storage size of these schemes and chose the best improvements after some experimentation. Using 

a few datasets with different distributions and value lengths, we compared these improved 

encryption schemes. CVH and PVH are the most suitable schemes for Zipfian and linear datasets 

respectively. 

 
 

5.2 Future work 

We could expand the project by exploring different definitions of security and efficiency (e.g. time 

efficiency) and fine-tuning our parameters to further optimize the schemes. We could also look at 

dynamic datasets where information can be added or updated.  
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Appendix 1: Definitions 

a) Leakage 

For all structured encryption schemes, there are three types of leakages: 

1. Total volume leakage, where the total size of the dictionary d is made known to the 

adversary. The total volume is leaked from the Encrypted Data Structure (EDS) when the 

dictionary d’ is encrypted, as the adversary will be able to see the total number of values 

encrypted in the dictionary, ∑𝐿 ∈ {0,1}𝐿𝑙𝑒𝑛 |𝑑′[𝐿]| 

2. Query volume leakage, where the frequency information of values is leaked. When the 

client performs a search query for a particular label, all values corresponding to that label 

are returned. The number of encrypted values (from the EDS) returned by the server to the 

client is leaked to the adversary, and adversary learns |d’[L1]|,...|d’[Ln]| 

3. Query equality leakage, where the adversary is able to tell whether pairs of queries made 

by the client are the same or different. Given queries L1,...,Ln, the leakage can be captured 

as a binary matrix X where Xi,j=1 if and only if Li=Lj. 

 

b) Dictionary encryption 

A dictionary encryption defines two protocols: Encrypt and Lookup 

Encrypt (D.Encrypt) Lookup (D.Lookup) 

Client input: Dictionary d with labels of a fixed 

length Llen and values of arbitrary length 

Client input: L (label), K  

Server input: ε (epsilon) 

 
Client output (search result): (v1, … vn) or ⊥  

Client output: Key K Server input: Encrypted Data Structure (EDS), 

bit string of arbitrary length 

Server output: Encrypted Data Structure (EDS) Server output: ε (epsilon) 

 

Correctness condition: 

Given (K, EDS) = D.Encrypt(d; ε), for some K, d 

Then ∀ L D.Lookup(K, L; EDS) = (x; ε) is such that x = d[L] 
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Appendix 2: Pseudocodes 

 

Pad and split functions 

 

Define pad(v, fixed_length): 

# |v| = length of the value 

# fixed_length = multiple length that v should be padded to 

   v.append(1) 

   While |v| mod fixed_length > 0: 

      v.append(0) 

   return v 

 

Define split(v, block_length): 

   pad(v, block_length)    

   split_v ← [] 
   counter = 0 

   while counter < |v|: 

      split_v.append(v[counter:counter+block_length]) 

      counter += block_length 

   return split_v 

 

Define unpad(v): 

   While last_digit(v) =/= 1: 

      v.remove(last_digit(v)) 

   v.remove(last_digit(v)) 

   return v 

1. Naive Volume Hiding (NVH) 

NVH.Encrypt (input d, KL, KV) 

CLIENT 

 

Initialize empty dictionary d’ and EDS  

Let [𝑏](d) = {𝑙 ∈ {0,1}∗|𝑑[𝑙] ≠⊥} 

For L∈ [𝑏](d): 

  x ← len(d[L]) 

  i ← 0 

  KG = H.Ev(KL, L) 

  While i ≤ x: 

     vL ← d[L][i] 

     Li ← H.Ev(KG, i) #hash index with label key 

     d’[Li] ← vL 

     i ← i + 1 

 

 

SERVER 
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For L ∈ {0,1}|L| where d’[L]≠⊥:  

   vL ← d’[L] 

   pad(vL, m) 

   EDS[L] ← SE.Enc(KV, d’[L]) 

 

client.send(EDS) 

 

NVH.Lookup (input L, KL, KV) 

CLIENT 

i ← 0 

ret ← [] 
L’ ← H.Ev(KL, L) 

client.send(L’) 

 

 

client.receive(EDS[L’]) 

v ← unpad(SE.Dec(Kv, EDS[L’])) 

  

return v 

 

 

 

 

 

 

 

 

 

 

server.receive(EDS) 

 

 

 

 

 

 

server.receive(L’) 

server.send(EDS[L’]) 

2. Parameterized Volume Hiding (PVH) 

PVH(m, h) 

m is size that all values are padded to 

h is length of the hash output 

PVH.Encrypt (input d, KL, KV, m, h) 

CLIENT 

 

Initialize empty dictionary d’ and EDS  

Let [𝑏](d) = {𝑙 ∈ {0,1}∗|𝑑[𝑙] ≠⊥} 

For L∈ [𝑏](d): 

   vL ← d[L]  

   L ← H.Ev(KL, L) #hash label with label key 

   L ← L.truncate(h) # truncate label  

   If d’[L] ≠ ⊥: 

     d’[L].append(L||vL)    

   Else: 

      d’[L] ← L||vL 

 

For L ∈ {0,1}|h| where d’[L]=/=⊥:  

    vL ← d’[L] 

    If vL ≤ m: 
       pad(vL, m) 

   Else: 

 

SERVER 
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       Error  

   EDS[L] ← SE.Enc(KV, d’[L]) 

 

client.send(EDS) 

 

PVH.Lookup (input L, KL, KV, h) 

ret ← [] 
i ← 0 

L’ ← H.Ev(KL, L).truncate(h) 

client.send(L’) 

 

client.receive(EDS[L’]) 

D ← unpad(SE.Dec(Kv, EDS[L’])) 

For x in len(D): 

   Lx||Vx ← D[x] 
   if Lx == L: ret.append(VX) 

 

end while  

return ret 

 

 

 

 

 

 

 

server.receive(EDS) 

 

 

 

 

 

 

server.receive(L’) 

server.send(EDS[L’]) 

3. Graph Volume Hiding (GVH) 

There are two different ways to assign values to indices. The first method is using the greedy 

algorithm (highlighted in green) and the second is using the maximum bipartite matching 

algorithm (highlighed in yellow). 

GVH.Encrypt (input d, KV, KL, t, g) 

CLIENT 

Initialize empty dictionary d’ and EDS 

 

E ← [] #edges 

V ← [] #values 

Let [𝑏](d) = {𝑙 ∈ {0,1}∗|𝑑[𝑙] ≠⊥} 

For L∈ [𝑏](d): 

     For i in len(d[L]): d[L][i] ← L||d[L][i] 

     KG ← H.Ev(KL, L) 

     B ← [0]g # to store visited edges 

     i ← 0 

     counter ← 0 

     while counter < t: 

          KN ← H.Ev(KG, i) 

          KN ← KN.truncate(log(g)) 

          i ← i + 1 

          if B[KN] == 1: continue 

          else: 

               B[KN] = 1 

 

SERVER 
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               counter ← counter + 1 

     For i in len(d[L]): E.append(B) 

     V.append(d[L]) 

res ← max_bipartite_matching(E) 
If res == ⊥: Error 

 

 

For L ∈ [𝑏](d):  

      If 1 in E and E[1] = ⊥: 

 

       res[i] ← E.index(1) 
 

 

For i in len(res): 

      EDS[res[i]] = SE.Enc(Kv, V[i]) 

For i in range(g): 

      If EDS[i] == ⊥:  

           EDS[i] = SE.Enc(KV, 0) 

client.send(EDS) 

 

GVH.Lookup (input L, KV, KL, t, g) 

KG ← H.Ev(KL, L) 

client.send(KG, t, g) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

client.receive(S) 

ret ← [] 
For i in len(S): 

      S[i] ← SE.Dec(KV, S[i]) 

      Li||Vi ← S[i] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

server.receive(EDS) 

 

 

 

 

server.receive(KG, t, g) 

S ← [] 
B ← [0]g # to store visited edges 

i ← 0 

counter ← 0 

While counter < t: 

     KN ← H.Ev(KG, i) 

     KN ← KN.truncate(log(g)) 

     i ← i + 1 

     if B[KN] == 1: continue 

     else: 

          B[KN] = 1 

          counter ← counter + 1 

end while 

For i in len(B): 

     If B[i] == 1: S.append(EDS[i]) 

server.send(S) 
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      If Li == L: ret.append(S[i]) 

Return ret 

4. Bucket Volume Hiding (BVH) 

BVH.Encrypt (input: d, KV, KL, n, m, t) 

CLIENT 

Initialize empty dictionary d’ and EDS 

 

B ← [] # buckets 

V ← [] # values 

Let [𝑏](d) = {𝑙 ∈ {0,1}∗|𝑑[𝑙] ≠⊥} 

For L∈ [𝑏](d): 

     For i in len(d[L]): d[L][i] ← L||d[L][i] 

     KG ← H.Ev(KL, L) 

     A ← [0]n # to store visited buckets 

     i ← 0 

     counter ← 0 

     while counter < t: 

          KN ← H.Ev(KG, i) 

          KN ← KN.truncate(log(n)) 

          i ← i + 1 

          if A[KN] == 1 and len(B)>m: continue 

          else: 

               A[KN] = 1 

               counter ← counter + 1 

               For i in len(d[L]): B.append(A) 

               V.append(d[L]) 

      

If res == ⊥: Error 

For i in len(res): 

      EDS[res[i]] = SE.Enc(Kv, V[i]) 

For i in range(n): 

      If EDS[i] == ⊥:  

           EDS[i] = SE.Enc(KV, 0) 

client.send(EDS) 

 

BVH.Lookup (input L, KV, KL, n, m, t) 

KG ← H.Ev(KL, L) 

client.send(KG, n, m, t) 

 

 

 

 

 

 

SERVER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

server.receive(EDS) 
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client.receive(S) 

ret ← [] 
For i in len(S): 

      S[i] ← SE.Dec(KV, S[i]) 

      Li||Vi ← S[i] 
      If Li == L: ret.append(S[i]) 

Return ret 

server.receive(KG, n, m, t) 

S ← [] 
A ← [0]n # to store visited buckets 

i ← 0 

counter ← 0 

While counter < t: 

      KN ← H.Ev(KG, i) 

      KN ← KN.truncate(log(n)) 

      i ← i + 1 

      if A[KN] == 1 and len(B)>m: continue 

      else: 

           A[KN] = 1 

           counter ← counter + 1 

           For i in len(d[L]): B.append(A) 

           V.append(d[L]) 

end while 

 

For i in len(A): 

     If B[i] == 1: S.append(EDS[i]) 

server.send(S) 
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5. Cuckoo Data-structure Volume Hiding (CVH) 

 

A data structure is a storage that is used to store and organize data. Examples of data structures 

are dictionaries (which we have mentioned throughout the above parts and used for the other 

volume hiding encryption schemes). Dictionaries can be converted into another data structure 

known as the cuckoo data structure. Due to its rather complex nature, we will not be describing 

its features in full - please refer to this paper for more information.  

 

To provide a brief introduction to the cuckoo data structure: In a dictionary, each key corresponds 

to one label. On the other hand, the cuckoo data structure has multiple rows, with each row 

corresponding to two values. Each label in the dictionary can be hashed twice and the hash output 

determines the possible position of the corresponding value: each value in the dictionary has two 

possible positions in the cuckoo data structure. If the first hash output of a newer label collides 

with a previous one, the cuckoo hashing imitates the real-life cuckoo bird by “pushing out” the 

previous hash output. The previous label is hashed a second time to obtain a hash output in its 

second possible position of the cuckoo dictionary. This cycle continues, and it succeeds when 

each value can be stored in either one of the two possible positions in the cuckoo data-structure, 

and fails when it results in an infinite loop.  

 

In the case of a failure, the values that are unable to be stored are placed in a stash. The stash box 

is padded to a size S. During a lookup, values in the stash are also returned. To prevent leakage, 

the stash is padded.  

 

In this cuckoo data structure, there are n number of labels, and the block-size of the values is m. 

The size of the stash is S. 

 

Dictionary 

Label Value Hash 1 Hash 2 

x1 y1 1 4 

x2 y2 2 3 

x3 y3 4 3 

x4 y4 2 5 

x5 y5 4 2 

 

Cuckoo data-structure 

Label Value 1 Value 2 Stash 

box 

 

y2||pad  
1 y1 pad 

https://cs.stanford.edu/~rishig/courses/ref/l13a.pdf
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2 y2 y4 pad 

3 pad y2 y3 

4 y3 y5 pad 

5 pad pad  
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Appendix 3: Intra-scheme results 

As a benchmark, the query bandwidth of NVH is 10063.92 bits and the storage size is 1018288 

bits. 

PVH 

 Appending labels to 

each value 

Recording number of 

bits in values 

Storing start and end 

position 

Storage size/bits 241699.84 186119.1667 214095.5789 

Query 

bandwidth/bits 

15048 11544 12048 

Both “recording the number of bits in values” and “storing start and end positions of values” are 

improvements upon just appending labels to each value in terms of storage size and query 

bandwidth. The storage size when “storing the start and end indexes of values” is 15.0% larger 

than that when “recording the number of bits in values” as it requires the introduction of an 

alternative data structure, which is padded to make it volume-hiding. The indices returned during 

querying also means that it has a slightly higher query bandwidth (4.3%). Thus, we choose 

“recording number of bits in values” as the most optimal encoding technique as (1) it has a smaller 

storage size and (2) it reduces query bandwidth. 

 

GVH 

 Appending 

labels to values 

Store 

counter 

Store 

edges 

Edges bit-map Frog-hopping 

Storage 

size/bits 168555.76 160611.92  186918.08 294310.08  165902.24 

Query 

bandwidth 

/bits 21692.24 36470.64 39774.32 39775.04 38446.4 

“Storing counters” results in the largest savings in storage size. This is because storing counters 

has a smaller storage size than storing edges, as counters are likely to be smaller than edges. The 

maximum number of used edges (which is the size of each tuple in “storing counters”) is also 

smaller than the total number of array indices (which is the size of each tuple in the bitmap). Thus, 

we think that storing the counters is the most suitable encoding technique for GVH. 

 

BVH 

 Appending labels to 

values 

Modified bitmap Frog-hopping 

Storage size/bits 384675.2 5620602.88 360626.96 

Query 

bandwidth/bits 

88639.68 111610.8 112193.52 
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The storage size of “modified bitmap” is over 15 times larger than that of the “frog-hopping” 

encoding technique due to the presence of the alternative dataset, while the query bandwidth of 

“frog-hopping” is only 0.5% larger than that of modified bitmap – this is because “frog-hopping” 

returns both the label and two 𝛥 values for each value when a label is queried, while the modified 

bitmap only returns values. The size of the alternative dataset (i.e. the modified bitmap) is 

𝑙 × 𝑚 × 𝑛, while the increase in storage size due to appending of labels is 𝑙 × 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒. We 

choose “frog-hopping” as the most optimal encoding technique as the tradeoff in terms of query 

bandwidth is smaller than the tradeoff in storage size of the modified bitmap is used. 

 

CVH 

 Appending labels to values 3-bit map 

Storage size/bits 154249.2 139553.2 

Query bandwidth/bits 23992 19448.08 

 

Appendix 4: Zipfian data distribution 

 

https://www.iacr.org/archive/eurocrypt2019/114760319/114760319.pdf  

https://www.iacr.org/archive/eurocrypt2019/114760319/114760319.pdf
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