
Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

VOLUME-HIDING DICTIONARY ENCRYPTION: NEW SCHEMES AND

BENCHMARKING RESULTS

Jemma Lee Miin Yee1, Cadence Wern Sea Loh1, Sheng Yu Fei Carol1, Ruth Ng Ii-Yung2

1Raffles Institution (Junior College), 1 Raffles Institution Lane, Singapore 575954

2DSO National Laboratories, 20 Science Park Drive, Singapore 118230

ABSTRACT

Structured encryption (STE) schemes allow search queries to be made on an encrypted dataset.

The focus of our project is on volume-hiding encryption schemes, which are a subset of STE

schemes where the same volume of data is returned for each search query, thus making the scheme

more secure. By implementing novel algorithmic and cryptographic techniques, we improved upon

4 encryption schemes1 from the literature in terms of their query bandwidth and storage. Our

experimentation consists of 2 phases: Intra-scheme and inter-scheme comparisons. In the former,

we enumerate the improvements on each scheme, and selected between them by comparing their

tradeoffs in a few case studies, constructing an improved variant of each scheme. In the latter, we

benchmark these new variants to evaluate tradeoffs between storage and query bandwidth. Thus,

our work improves upon the current state-of-the-art with novel techniques and uniform

benchmarking. Our work is impactful in practical use cases since our new schemes significantly

improve storage and bandwidth, and we can firmly recommend our Cuckoo Volume-Hiding

(CVH) and Parametrized Volume-Hiding (PVH) variants as the most suitable schemes for Zipfian

and linear datasets respectively.

1 introduced by Kamara, S., & Moataz, T. (2019), Patel, S., Persiano, G., Yeo, K., & Yung, M.

(2019), Naveed, M., Prabhakaran, M., & Gunter, C. A. (2014), Chase, M., & Kamara, S. (2010)

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

1. INTRODUCTION

Encryption has become increasingly important in a digital world that values privacy and

convenience. To ensure the security of their confidential databases, clients encrypt their databases

and store the encrypted data on an external cloud server, like Amazon Web Services and IBM

Cloud.

To make sure that the database can be queried after encryption, structured encryption (STE)

schemes are used. When clients send queries to the server, the server will return the relevant data

to clients (think of this as searching for a word on a document and being returned all instances of

that word). However, data returned for each query may vary in length, leaking query volume in

the process. To prevent this leakage, volume-hiding (VH) structured encryption schemes are

used instead, where the same amount of information is returned for every query. This increases

security as this method does not reveal the actual amount of information for each query, and

prevents adversaries from running leakage abuse attacks (LAAs) on the encrypted data. Existing

literature has introduced several volume-hiding encryption schemes: Naive VH (NVH) [KM19],

Graph VH (GVH) [NPG14], Bucket VH (BVH) [KM19] and Cuckoo VH (CVH) [PPYY19].

1.1 Our contributions

In this project, we optimized existing schemes in literature and compared the improved encryption

schemes in terms of their security and storage. Our novel contributions are -

1. Creating new variants of each existing scheme via novel cryptographic techniques to

improve schemes’ memory and query bandwidth

2. Comparison between improved schemes and recommendations for practical use cases

Our project has successfully improved the existing VH encryption schemes - the improvements

introduced have significantly reduced the query bandwidth and storage size of the encrypted data

structure (EDS). All the improved schemes are equally secure, but each has a different trade-off in

query bandwidth and storage size. Our comparison of the new schemes is also the first of its kind:

we found that our improved Parametrized VH (PVH) and CVH schemes work best for linear

and Zipfian datasets respectively.

2. BACKGROUND

We aim to encrypt dictionaries since it is an important data structure used in many large-scale

systems. Dictionaries are a collection of label-value pairs: they create associations between a label

L and value v (see Appendix 1 for more details). Structured encryption (STE) schemes encrypt

data such that queries can be made. When a dataset is encrypted, total volume of the dataset is

leaked. When queries are made, query volume and query equality is leaked (see Appendix 1 for

more details). In particular, query volume leakage is the leakage of frequency information when

queries are made; this occurs as the length of the value returned for each query is indicative of the

length of the value stored. By using volume-hiding, we return a same-length value regardless of

what label is queried. This eliminates query volume leakage, resulting in a more secure scheme.

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

3. INTRA-SCHEME IMPROVEMENTS: DESIGN & EXPERIMENTATION

3.1 Methodology

In this section, we employ a consistent approach to design improved STE schemes: (1) introduce

the existing scheme from literature; (2) enumerate novel improvements we considered and; (3)

explain choice of improvements via simulation data. For (2), improvements may either be technical

improvements or encoding techniques. An example dataset (Fig 2) will be used.

L1 v1||v2||v3 The schemes were implemented in Python using the following

primitives: HMAC-SHA256 to hash labels and AES-CTR-128 to

encrypt the values. For clarity, this encryption is left implicit in

diagrams and descriptions. For more details on the implementation of

the schemes, please refer to Appendix 2.

L2 v4||v5

L3 v6

Fig 2: Unencrypted Dictionary

In-keeping with the literature, our analysis of VH STE involves optimising two metrics:

(1) Storage of the encrypted data structure (EDS) refers to the total size of the EDS. We aim to

minimize the storage size of the EDS. In order to hide query volumes, volume-hiding encryption

schemes employ significant padding and are thus less efficient in memory and bandwidth. often

result in larger memory sizes as values have to be padded to a fixed maximum length to conceal

the true length of the values from the eavesdropper adversary. In the real world, many databases

are extremely large, and the cost of storing data on external cloud servers would increase with

increasing memory of the EDS.

(2) Query bandwidth refers to the size of the data returned to the client by the server when the

client queries a particular label. We aim to minimize the query bandwidth - the greater the query

bandwidth, the greater the amount of and the more time-consuming decryption work that the client

has to do after receiving the data.

An additional peculiarity of STE schemes is that encryption may sometimes fail. In our work, we

make this a controlled variable as real-world use-cases cannot tolerate wide ranges of failure rates.

Intra-scheme experimentation was done on a single dataset whose query length follow a Zipfian

distribution.

Fig 3: Summary of the

results of our

improvements

A negative percentage is

preferred as it demonstrates

a reduction in storage and

query bandwidth.

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

3.2 Naive VH to Parametrized VH (NVH to PVH)

NVH is parametrized by integer m, the length to pad each query to. This is illustrated in Fig 4.

L1 v1||v2||v3||pad Fig 4: NVH EDS stored on server

NVH stores each label with all

values associated to it, and is

volume-hiding since m bits is

returned for all queries.

L2 v4||v5||pad

L3 v6||pad

(1) Parametrization (Technical improvement)

Our first improvement is to add a new parameter, h, to which all hashes (encrypted labels) are

truncated to. When hashes collide, we store the values of both labels alongside each other, and

employ padding as in NVH. To eliminate false positives when a query is made, we “encode” the

values by storing its label alongside. An example is shown in Fig 5.

L1.truncate(h) L1||v1||L1||v2||L1||v3||pad Fig 5: PVH EDS stored on server

x.truncate(h) means that x has

been truncated to h bits.
L2.truncate(h) = L3.truncate(h) L2||v4||L2||v5||L3||v6||pad

(2) Recording number of bits in values (Encoding technique)

Instead of appending a label to the start of every value, we append only one of each label, followed

by the number of bits in its corresponding values. For example, Fig 5, the value corresponding to

truncated L2/L3 would be “L2||[length of v4+v5]||v4||v5||L3||[length of v6]||v6”.

(3) Storing the start and end position (Encoding technique)

For each label, the first index of its first value and the last index of its last value is stored in an

alternate data structure on the server (e.g. [0,1] for L2 in Fig 5).

3.2.1 Choice of improvements

We define the parametrized volume-hiding (PVH) scheme to use our “parametrization” and

“recording number of bits in values” improvements. “Parametrization” results in a reduction in

storage by 72.2% and an increase in query bandwidth by 49.5% from NVH. Since the reduction

outweighs the increase, “parametrization” results in overall improvement. “Recording number of

bits in values” causes storage and query bandwidth to decrease by the largest percentage (23%),

as it does not require an alternate data structure and labels are not repeated.

3.3 Graph VH to new Graph VH (GVH to new GVH)

The GVH scheme2 works by associating labels with array indices. The array has g indices and

each label is assigned to a subset of t indices. Labels are pseudorandomly assigned to indices, and

values are stored at those indices via greedy allocation (i.e. values for a given are assigned to the

first empty adjacent indices).

2 introduced by Kamara, S., & Moataz, T. (2019)

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

(1) Maximum bipartite matching (Technical improvement)

Instead of greedily assigning indices, maximum bipartite matching will ensure an optimal

assignment to minimize failure rate. We express the pseudorandom assignment with bipartite

graph B and employ a graph matching algorithm to derive a matching M which is used to allocate

values to indices. An example case, where g=7 and t=3, is shown in Fig 6 and Fig 7.

When L1 is queried, indices

1, 2 and 3 are returned. t

edges are returned for every

label queried, thus making

the scheme volume-hiding.

Fig 6: Bipartite graph B Fig 7: Optimal Graph matching M

(2) Storing counters (Encoding technique)

Counters for the used edges are stored in an alternate data structure that is padded to be volume-

hiding. In the case of Fig 7, we store L1::[1||2||3], L2::[2||3||pad] and L3::[2||pad].

(3) Storing used edges (Encoding technique)

Used edges are stored in an alternate data structure that is padded to be volume-hiding. In the case

of Fig 7, we store L1::[1||2||3], L2::[4||5||pad] and L3::[6||pad].

(4) Bitmap for used edge (Encoding technique)

A bitmap is stored for each label in an alternate data structure. Each bitmap has a bit for each

assigned index which is set to “1” if and only if the edge is used in the matching In the case of Fig

7, we store L1::[1,1,1,0,0,0,0], L2::[0,0,0,1,1,0,0] and L3::[0,0,0,0,0,1,0].

(5) Frog-hopping (Encoding technique)

Like a linked-list, each value is accompanied by a pointer informing how many places ahead the

next value is. A prepended bit is used to distinguish each list’s “head” from all other values.

3.3.1 Choice of improvements

Our new GVH scheme uses the “maximum bipartite matching” and “storing counters”

improvements. Maximum bipartite matching is strictly better than greedy matching since it is

optimal - using maximum bipartite matching decreases storage size by 4.7% and query bandwidth

by 78.6%. “Storing counters” is chosen as it results in the largest decrease in storage from the

“naive” method (4.7%), though query bandwidth increases (68.1%).

3.4 Bucket VH to new Bucket VH (BVH to new BVH)

In BVH, there exists n buckets, each of size m (padding is needed if size<m). Each label is

allocated slots in t buckets where values are stored. Each query returns all values in t buckets.

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

Fig 8: Unencrypted

dictionary

Fig 9: Allocation of slots in buckets (n=4, m=3 and

t=3)

Fig 10: BVH EDS stored on

server

(1) Modified bitmap (Encoding technique)

The modified bitmap stores the position of each value in a bucket and “-1” if the value is not in

the bucket. In the above example, the bitmap contains L1::[1,1,1], L2::[2,2,0] and L3::[2,0,0].

(2) Frog-hopping (Encoding technique)

Similar to 3.3.5, but each stored value is instead accompanied by two pointers informing how

many buckets and positions ahead the next value is.

3.4.1 Choice of improvements

Our new BVH scheme employs the “frog-hopping” improvement. It is the best encoding since it

does not require the use of an alternate data structure, reducing storage size by 6.3%.

3.5 Cuckoo VH to new Cuckoo VH (CVH to new CVH)

In PPYY19, CVH uses a cuckoo data structure (refer to Appendix 2 for more information) to store

data. In this cuckoo data structure, there are n rows, and the maximum size of the stash is S.

(1) 3-bit map (Encoding technique)

“0” is stored if the value is found in the left column, “1” if the value is found in the right column

and the index if the value is found in the stash.

3.5.1 Choice of improvements

Our new CVH scheme employs the “3-bit map” improvement. It is the best encoding since it

results in 9.6% decrease in storage and 19.0% decrease in query bandwidth.

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

3.6 Summary of results

All the new schemes result in substantial savings in storage and/or query bandwidth due to

technical improvements and encoding techniques (Fig 3). Moving forward, when we conduct the

inter-scheme comparison, we will be using the improved schemes.

4. INTER-SCHEME BENCHMARKING

4.1 Metrics for inter-scheme comparison

Important metrics in comparing volume-hiding schemes are failure rate, security, storage and

query bandwidth. By the definition of volume-hiding schemes, it is noted that each scheme has the

same security since the information leaked is the same. As discussed in section 2, all VH schemes

carry an inherent failure probability (e.g. in PVH, all labels could hash to the same value). To keep

this (relatively) constant, we select parameters which keep failure below 5% in all experiments.

This leaves storage size and query bandwidth as metrics to be evaluated. The schemes were

compared on different artificially-generated datasets to compare the tradeoffs between these two

metrics, with varying (1) number of labels, (2) total length of labels, and (3) distribution of data.

The distribution of data follows either a Zipfian (value length increases exponentially - refer to

Appendix 4) or linear distribution (value length increases linearly). NVH is used as a benchmark.

Fig 12: Storage for Zipfian datasets

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

Fig 13: Query bandwidth for Zipfian datasets

Fig 14: Storage for Linear datasets

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

Fig 15: Query bandwidth for Linear datasets

4.2 Storage size

4.2.1 Zipfian dataset

Storage of EDS decreases from NVH to PVH to BVH to GVH to CVH (Fig 12).

(a) The storage size of NVH is the largest as a large amount of padding is required to pad the

shorter values to the same maximum length in a Zipfian dataset. The storage size of PVH is

significantly smaller as the labels could collide such that shorter values are concatenated and less

padding is needed, but there is still a small chance that labels collide such that the longest values

are concatenated and more padding is required.

(b) The storage size of BVH is smaller than that of PVH since the number of buckets can be

increased, reducing the number of values in each bucket and thus padding for each bucket, but the

storage size of GVH is smaller than that of BVH since parameters are more easily controlled.

(c) The storage size of CVH is the smallest, as the EDS in CVH is a cuckoo data structure which

takes up less storage compared to other encryption schemes that use a dictionary.

4.2.2. Linear dataset

Storage of EDS decreases from BVH to GVH to CVH to NVH to PVH (Fig 14). We note that

NVH and PVH perform much better for the linear dataset than the Zipfian dataset. This is

because much less padding is required for NVH. For PVH, the collision of the largest values will

not result in a significantly larger value, hence lowering storage.

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

4.3 Query Bandwidth

For Zipfian datasets, the query bandwidth of the EDS decreases from BVH to CVH to GVH to

PVH to NVH (Fig 13). For linear datasets, the query bandwidth of the EDS decreases from BVH

to CVH to PVH to GVH to NVH (Fig 15).

(a) The query bandwidth of BVH is the highest as many values in different buckets are returned.

(b) The query bandwidth of CVH is slightly lower. Although the entire stash is returned for each

query, there are less values in the rows being returned than the values in buckets returned for BVH.

(c) The query bandwidth of GVH is lower than that of CVH. The assignment of values to

indices is optimised in GVH so fewer indices have to be returned, but this is not the case for CVH

as it returns at least double the size of the maximum value due to CVH returning 2 columns and a

stash.

(d) The query bandwidth for GVH is lower than that of PVH for linear datasets but higher

for Zipfian datasets since the length of the maximum value is not large relative to the size of the

linear dataset but the opposite is true for Zipfian datasets. Thus, more array indices need to be

returned for GVH for Zipfian datasets and it has a larger query bandwidth.

(e) However, the query bandwidth of PVH is larger than NVH as the longest concatenated

value length in PVH is mostly always longer than the longest value length in NVH.

4.4 Takeaways

There is a trade-off between storage size of the EDS and query bandwidth - from our experiments,

there is no way to minimise both metrics at the same time. This is intuitive since NVH would be

used if lower query bandwidth is desired, but it has the highest storage, and storage could be

minimised by encrypting all values as a single block, but the entire database has to be returned

each time a query is made. From our results, PVH should be used for linear datasets while CVH

should be used for Zipfian datasets as storage savings are substantial while increase in query

bandwidth is insignificant.

5. CONCLUSION

5.1 Summary

We considered 4 existing schemes in literature: NVH, GVH, CVH and BVH. We then introduced

a variety of technical improvements and encoding techniques to improve the query bandwidth and

storage size of these schemes and chose the best improvements after some experimentation. Using

a few datasets with different distributions and value lengths, we compared these improved

encryption schemes. CVH and PVH are the most suitable schemes for Zipfian and linear datasets

respectively.

5.2 Future work

We could expand the project by exploring different definitions of security and efficiency (e.g. time

efficiency) and fine-tuning our parameters to further optimize the schemes. We could also look at

dynamic datasets where information can be added or updated.

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

6. ACKNOWLEDGEMENTS

We would like to thank our mentor, Ruth Ng Ii-Yung, for her guidance and support throughout

our research process and for providing us with inspiration to come up with the various

improvements. We would also like to thank Choo Jia Guang for helping us with the programming

aspects of the project. Finally, we would like to thank the SP20 interns for their emotional support

and friendship during our internship.

7. REFERENCES

[1] Kamara, S., & Moataz, T. 2019. Computationally volume-hiding structured encryption.

Advances in Cryptology – EUROCRYPT 2019, 183–213. https://doi.org/10.1007/978-3-030-

17656-3_7

[2] Patel, S., Persiano, G., Yeo, K., & Yung, M. 2019. Mitigating leakage in secure cloud-hosted

data structures. Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security. https://doi.org/10.1145/3319535.3354213

[3] Naveed, M., Prabhakaran, M., & Gunter, C. A. 2014. Dynamic searchable encryption via blind

storage. 2014 IEEE Symposium on Security and Privacy. https://doi.org/10.1109/sp.2014.47

[4] Chase, M., & Kamara, S. 2010. Structured encryption and controlled disclosure. Advances in

Cryptology - ASIACRYPT 2010, 577–594. https://doi.org/10.1007/978-3-642-17373-8_33

https://doi.org/10.1007/978-3-030-17656-3_7
https://doi.org/10.1007/978-3-030-17656-3_7
https://doi.org/10.1145/3319535.3354213
https://doi.org/10.1109/sp.2014.47
https://doi.org/10.1007/978-3-642-17373-8_33

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

Appendix 1: Definitions

a) Leakage

For all structured encryption schemes, there are three types of leakages:

1. Total volume leakage, where the total size of the dictionary d is made known to the

adversary. The total volume is leaked from the Encrypted Data Structure (EDS) when the

dictionary d’ is encrypted, as the adversary will be able to see the total number of values

encrypted in the dictionary, ∑𝐿 ∈ {0,1}𝐿𝑙𝑒𝑛 |𝑑′[𝐿]|

2. Query volume leakage, where the frequency information of values is leaked. When the

client performs a search query for a particular label, all values corresponding to that label

are returned. The number of encrypted values (from the EDS) returned by the server to the

client is leaked to the adversary, and adversary learns |d’[L1]|,...|d’[Ln]|

3. Query equality leakage, where the adversary is able to tell whether pairs of queries made

by the client are the same or different. Given queries L1,...,Ln, the leakage can be captured

as a binary matrix X where Xi,j=1 if and only if Li=Lj.

b) Dictionary encryption

A dictionary encryption defines two protocols: Encrypt and Lookup

Encrypt (D.Encrypt) Lookup (D.Lookup)

Client input: Dictionary d with labels of a fixed

length Llen and values of arbitrary length

Client input: L (label), K

Server input: ε (epsilon)

Client output (search result): (v1, … vn) or ⊥

Client output: Key K Server input: Encrypted Data Structure (EDS),

bit string of arbitrary length

Server output: Encrypted Data Structure (EDS) Server output: ε (epsilon)

Correctness condition:

Given (K, EDS) = D.Encrypt(d; ε), for some K, d

Then ∀ L D.Lookup(K, L; EDS) = (x; ε) is such that x = d[L]

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

Appendix 2: Pseudocodes

Pad and split functions

Define pad(v, fixed_length):

|v| = length of the value

fixed_length = multiple length that v should be padded to

 v.append(1)

 While |v| mod fixed_length > 0:

 v.append(0)

 return v

Define split(v, block_length):

 pad(v, block_length)

 split_v ← []
 counter = 0

 while counter < |v|:

 split_v.append(v[counter:counter+block_length])

 counter += block_length

 return split_v

Define unpad(v):

 While last_digit(v) =/= 1:

 v.remove(last_digit(v))

 v.remove(last_digit(v))

 return v

1. Naive Volume Hiding (NVH)

NVH.Encrypt (input d, KL, KV)

CLIENT

Initialize empty dictionary d’ and EDS

Let [𝑏](d) = {𝑙 ∈ {0,1}∗|𝑑[𝑙] ≠⊥}

For L∈ [𝑏](d):

 x ← len(d[L])

 i ← 0

 KG = H.Ev(KL, L)

 While i ≤ x:

 vL ← d[L][i]

 Li ← H.Ev(KG, i) #hash index with label key

 d’[Li] ← vL

 i ← i + 1

SERVER

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

For L ∈ {0,1}|L| where d’[L]≠⊥:

 vL ← d’[L]

 pad(vL, m)

 EDS[L] ← SE.Enc(KV, d’[L])

client.send(EDS)

NVH.Lookup (input L, KL, KV)

CLIENT

i ← 0

ret ← []
L’ ← H.Ev(KL, L)

client.send(L’)

client.receive(EDS[L’])

v ← unpad(SE.Dec(Kv, EDS[L’]))

return v

server.receive(EDS)

server.receive(L’)

server.send(EDS[L’])

2. Parameterized Volume Hiding (PVH)

PVH(m, h)

m is size that all values are padded to

h is length of the hash output

PVH.Encrypt (input d, KL, KV, m, h)

CLIENT

Initialize empty dictionary d’ and EDS

Let [𝑏](d) = {𝑙 ∈ {0,1}∗|𝑑[𝑙] ≠⊥}

For L∈ [𝑏](d):

 vL ← d[L]

 L ← H.Ev(KL, L) #hash label with label key

 L ← L.truncate(h) # truncate label

 If d’[L] ≠ ⊥:

 d’[L].append(L||vL)

 Else:

 d’[L] ← L||vL

For L ∈ {0,1}|h| where d’[L]=/=⊥:

 vL ← d’[L]

 If vL ≤ m:
 pad(vL, m)

 Else:

SERVER

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

 Error

 EDS[L] ← SE.Enc(KV, d’[L])

client.send(EDS)

PVH.Lookup (input L, KL, KV, h)

ret ← []
i ← 0

L’ ← H.Ev(KL, L).truncate(h)

client.send(L’)

client.receive(EDS[L’])

D ← unpad(SE.Dec(Kv, EDS[L’]))

For x in len(D):

 Lx||Vx ← D[x]
 if Lx == L: ret.append(VX)

end while

return ret

server.receive(EDS)

server.receive(L’)

server.send(EDS[L’])

3. Graph Volume Hiding (GVH)

There are two different ways to assign values to indices. The first method is using the greedy

algorithm (highlighted in green) and the second is using the maximum bipartite matching

algorithm (highlighed in yellow).

GVH.Encrypt (input d, KV, KL, t, g)

CLIENT

Initialize empty dictionary d’ and EDS

E ← [] #edges

V ← [] #values

Let [𝑏](d) = {𝑙 ∈ {0,1}∗|𝑑[𝑙] ≠⊥}

For L∈ [𝑏](d):

 For i in len(d[L]): d[L][i] ← L||d[L][i]

 KG ← H.Ev(KL, L)

 B ← [0]g # to store visited edges

 i ← 0

 counter ← 0

 while counter < t:

 KN ← H.Ev(KG, i)

 KN ← KN.truncate(log(g))

 i ← i + 1

 if B[KN] == 1: continue

 else:

 B[KN] = 1

SERVER

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

 counter ← counter + 1

 For i in len(d[L]): E.append(B)

 V.append(d[L])

res ← max_bipartite_matching(E)
If res == ⊥: Error

For L ∈ [𝑏](d):

 If 1 in E and E[1] = ⊥:

 res[i] ← E.index(1)

For i in len(res):

 EDS[res[i]] = SE.Enc(Kv, V[i])

For i in range(g):

 If EDS[i] == ⊥:

 EDS[i] = SE.Enc(KV, 0)

client.send(EDS)

GVH.Lookup (input L, KV, KL, t, g)

KG ← H.Ev(KL, L)

client.send(KG, t, g)

client.receive(S)

ret ← []
For i in len(S):

 S[i] ← SE.Dec(KV, S[i])

 Li||Vi ← S[i]

server.receive(EDS)

server.receive(KG, t, g)

S ← []
B ← [0]g # to store visited edges

i ← 0

counter ← 0

While counter < t:

 KN ← H.Ev(KG, i)

 KN ← KN.truncate(log(g))

 i ← i + 1

 if B[KN] == 1: continue

 else:

 B[KN] = 1

 counter ← counter + 1

end while

For i in len(B):

 If B[i] == 1: S.append(EDS[i])

server.send(S)

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

 If Li == L: ret.append(S[i])

Return ret

4. Bucket Volume Hiding (BVH)

BVH.Encrypt (input: d, KV, KL, n, m, t)

CLIENT

Initialize empty dictionary d’ and EDS

B ← [] # buckets

V ← [] # values

Let [𝑏](d) = {𝑙 ∈ {0,1}∗|𝑑[𝑙] ≠⊥}

For L∈ [𝑏](d):

 For i in len(d[L]): d[L][i] ← L||d[L][i]

 KG ← H.Ev(KL, L)

 A ← [0]n # to store visited buckets

 i ← 0

 counter ← 0

 while counter < t:

 KN ← H.Ev(KG, i)

 KN ← KN.truncate(log(n))

 i ← i + 1

 if A[KN] == 1 and len(B)>m: continue

 else:

 A[KN] = 1

 counter ← counter + 1

 For i in len(d[L]): B.append(A)

 V.append(d[L])

If res == ⊥: Error

For i in len(res):

 EDS[res[i]] = SE.Enc(Kv, V[i])

For i in range(n):

 If EDS[i] == ⊥:

 EDS[i] = SE.Enc(KV, 0)

client.send(EDS)

BVH.Lookup (input L, KV, KL, n, m, t)

KG ← H.Ev(KL, L)

client.send(KG, n, m, t)

SERVER

server.receive(EDS)

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

client.receive(S)

ret ← []
For i in len(S):

 S[i] ← SE.Dec(KV, S[i])

 Li||Vi ← S[i]
 If Li == L: ret.append(S[i])

Return ret

server.receive(KG, n, m, t)

S ← []
A ← [0]n # to store visited buckets

i ← 0

counter ← 0

While counter < t:

 KN ← H.Ev(KG, i)

 KN ← KN.truncate(log(n))

 i ← i + 1

 if A[KN] == 1 and len(B)>m: continue

 else:

 A[KN] = 1

 counter ← counter + 1

 For i in len(d[L]): B.append(A)

 V.append(d[L])

end while

For i in len(A):

 If B[i] == 1: S.append(EDS[i])

server.send(S)

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

5. Cuckoo Data-structure Volume Hiding (CVH)

A data structure is a storage that is used to store and organize data. Examples of data structures

are dictionaries (which we have mentioned throughout the above parts and used for the other

volume hiding encryption schemes). Dictionaries can be converted into another data structure

known as the cuckoo data structure. Due to its rather complex nature, we will not be describing

its features in full - please refer to this paper for more information.

To provide a brief introduction to the cuckoo data structure: In a dictionary, each key corresponds

to one label. On the other hand, the cuckoo data structure has multiple rows, with each row

corresponding to two values. Each label in the dictionary can be hashed twice and the hash output

determines the possible position of the corresponding value: each value in the dictionary has two

possible positions in the cuckoo data structure. If the first hash output of a newer label collides

with a previous one, the cuckoo hashing imitates the real-life cuckoo bird by “pushing out” the

previous hash output. The previous label is hashed a second time to obtain a hash output in its

second possible position of the cuckoo dictionary. This cycle continues, and it succeeds when

each value can be stored in either one of the two possible positions in the cuckoo data-structure,

and fails when it results in an infinite loop.

In the case of a failure, the values that are unable to be stored are placed in a stash. The stash box

is padded to a size S. During a lookup, values in the stash are also returned. To prevent leakage,

the stash is padded.

In this cuckoo data structure, there are n number of labels, and the block-size of the values is m.

The size of the stash is S.

Dictionary

Label Value Hash 1 Hash 2

x1 y1 1 4

x2 y2 2 3

x3 y3 4 3

x4 y4 2 5

x5 y5 4 2

Cuckoo data-structure

Label Value 1 Value 2 Stash

box

y2||pad
1 y1 pad

https://cs.stanford.edu/~rishig/courses/ref/l13a.pdf

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

2 y2 y4 pad

3 pad y2 y3

4 y3 y5 pad

5 pad pad

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

Appendix 3: Intra-scheme results

As a benchmark, the query bandwidth of NVH is 10063.92 bits and the storage size is 1018288

bits.

PVH

 Appending labels to

each value

Recording number of

bits in values

Storing start and end

position

Storage size/bits 241699.84 186119.1667 214095.5789

Query

bandwidth/bits

15048 11544 12048

Both “recording the number of bits in values” and “storing start and end positions of values” are

improvements upon just appending labels to each value in terms of storage size and query

bandwidth. The storage size when “storing the start and end indexes of values” is 15.0% larger

than that when “recording the number of bits in values” as it requires the introduction of an

alternative data structure, which is padded to make it volume-hiding. The indices returned during

querying also means that it has a slightly higher query bandwidth (4.3%). Thus, we choose

“recording number of bits in values” as the most optimal encoding technique as (1) it has a smaller

storage size and (2) it reduces query bandwidth.

GVH

 Appending

labels to values

Store

counter

Store

edges

Edges bit-map Frog-hopping

Storage

size/bits 168555.76 160611.92 186918.08 294310.08 165902.24

Query

bandwidth

/bits 21692.24 36470.64 39774.32 39775.04 38446.4

“Storing counters” results in the largest savings in storage size. This is because storing counters

has a smaller storage size than storing edges, as counters are likely to be smaller than edges. The

maximum number of used edges (which is the size of each tuple in “storing counters”) is also

smaller than the total number of array indices (which is the size of each tuple in the bitmap). Thus,

we think that storing the counters is the most suitable encoding technique for GVH.

BVH

 Appending labels to

values

Modified bitmap Frog-hopping

Storage size/bits 384675.2 5620602.88 360626.96

Query

bandwidth/bits

88639.68 111610.8 112193.52

Jemma Lee Miin Yee, Cadence Wern Sea Loh, Sheng Yu Fei Carol

The storage size of “modified bitmap” is over 15 times larger than that of the “frog-hopping”

encoding technique due to the presence of the alternative dataset, while the query bandwidth of

“frog-hopping” is only 0.5% larger than that of modified bitmap – this is because “frog-hopping”

returns both the label and two 𝛥 values for each value when a label is queried, while the modified

bitmap only returns values. The size of the alternative dataset (i.e. the modified bitmap) is

𝑙 × 𝑚 × 𝑛, while the increase in storage size due to appending of labels is 𝑙 × 𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒. We

choose “frog-hopping” as the most optimal encoding technique as the tradeoff in terms of query

bandwidth is smaller than the tradeoff in storage size of the modified bitmap is used.

CVH

 Appending labels to values 3-bit map

Storage size/bits 154249.2 139553.2

Query bandwidth/bits 23992 19448.08

Appendix 4: Zipfian data distribution

https://www.iacr.org/archive/eurocrypt2019/114760319/114760319.pdf

https://www.iacr.org/archive/eurocrypt2019/114760319/114760319.pdf

	4.2 Storage size
	4.3 Query Bandwidth

