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ABSTRACT 
 

Land platforms are critical assets for military training and operations. When these platforms 

break down at suboptimal times, it affects operational objectives and increases maintenance 

cost due to the downtime. Thus, this project aims to use data analysis of telemetry data taken 

from land platforms and classification machine learning models to predict if failures would 

occur using past data trends. The aim is to boost the land platform’s availability, reduce 

maintenance costs by predicting potential platform breakdown using the specific dataset 

provided. Through tests conducted, a comprehensive model was developed which obtains a 

prediction accuracy of 97.50%. 
 

 
 

TABLE OF CONTENTS 
 
 

ABSTRACT 1 

TABLE OF CONTENTS 1 

INTRODUCTION 2 

LITERATURE REVIEW 2 

METHODS 3 

Preliminary Observations 3 

Exploratory Data Analysis 3 

Method Selection 5 

Explanation of models 5 

Training and Assessment of Models 5 

PERFORMANCE EVALUATION OF MODELS 6 

Dataset as a Whole 6 

Further Feature Engineering: Dataset as its Parts 8 

Results 8 

CONCLUSION AND RECOMMENDATIONS 9 

Real-Life Application 9 

Recommendations and Future Work 9 

ACKNOWLEDGEMENTS 9 

REFERENCES 10 

APPENDIX 10 

 



REDUCING COSTS FOR LAND PLATFORMS                                                                                                  2 

 

 

OFFICIAL (OPEN) \ NON-SENSITIVE 

INTRODUCTION 

 

Even with the constant development and improvement of technology over the past few decades, 

land platforms still play an important role serving as the cornerstone of modern warfare. The 

maintenance of land platforms, especially legacy ones, still remains a pertinent issue even 

today. The frequent or seemingly random breakdown of land platforms negatively affects its 

availability and causes an increase in maintenance costs.  

 

As is frequently said, prevention is better than cure. This project thus aims to use state-of-the-

art data analysis methods to process past telemetry data of land platforms and effectively 

forecast future possible failures in these land platforms in order to enhance availability and 

reduce maintenance costs, as well as to potentially enhance spares support for land platforms. 

 

In addition, the limited number of individual vehicles results in a smaller data sample and hence 

may affect the quality of results obtained from data analysis. With this in mind, this project 

also aims to optimise data analysis methods employed to better extract useful features and 

conclusions from the dataset. 

 

The parameters given are variant, mileage, engine hours, phase (of production), age till date. 

Initial intuition indicates that mileage and engine hours may be an important factor when 

determining breakdown as they indicate usage of the land platforms, and increased usage 

usually leads to a higher chance of breakdown. 

 

LITERATURE REVIEW 

 

Predictive maintenance to help reduce costs and improve equipment uptime has been a focal 

point for various industries, especially in sectors where machinery and equipment play a crucial 

role in operations. For Small and Medium Enterprises (SMEs), the maintenance cost of 

equipment could be the crucial difference between a profit and a loss. On the other hand, the 

uptime of crucial equipment matters, for example for land platforms in a military context where 

the availability is of logistical importance and affects operations and training success. 

 

The utilisation of data analytics has gained significant attention due to its potential in 

optimising maintenance strategies through predicting failures. Various studies have 

emphasised its importance through analysing large volumes of telemetry data generated by 

sensors, monitoring systems and historical records to identify patterns and trends related to 

equipment performance and failure. 

 

A predominant area of research involves the development of predictive maintenance models 

using advanced analytics techniques, for example machine learning. These models aim to 

forecast potential failures by analysing data. Research by Sezer et al. (2018) demonstrated the 

effectiveness of a low cost predictive maintenance approach which was applied to a CNC 

turning centre. Research by Mallock et al. (2021) showed that the effectiveness can be further 

extended to multiple aspects of a transport system, including “predicting upcoming failures”. 

The model used in the paper (Mallock et al., 2021) utilised the Random Forest model for 

predicting upcoming failures, which is one of the models that was tested for this project. 
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METHODS 

Preliminary Observations 

There are in total 129 individual data points, split into 107 non-breakdowns and 22 breakdowns 

as shown in Figure 1. Hence, the minimum target to achieve is 107 ÷ 129 = 82.9% accuracy 

and an ideal final accuracy is >90%. 

 

Figure 1 

Number of Pass and Fails 

 
 

The five parameters from the dataset provided are “variant” (of the land platform), “mileage”, 

“engine hours”, “phase” (of production) and “age till date”. “Variant” and “phase” are 

interpreted as categorical data, whereas “mileage” and “engine hours” are interpreted as 

numerical (continuous) data, with age till date interpreted as numerical (discrete) data. 

 

Initial intuition indicates that the main parameters that matter are “mileage”, “engine hours” 

and “age till date” since these relate to how much the land platforms are used. The hypothesis 

would be that “mileage” and “engine hours” show a strong correlation with land platforms 

failure rate. 

 

Exploratory Data Analysis 

Exploratory Data Analysis (EDA) is a method to study, visualise and analyse datasets to 

identify their predominant traits. It also allows for the discovery of patterns and identification 

of correlations between variables. EDA will be employed on this dataset in an attempt to 

uncover any interesting relationships and to possibly prove the initial hypothesis erroneous. 

 

For EDA, the packages Pandas, Matplotlib and Seaborn will be used in Python as statistical 

tools for data visualisation. 

 
df[“phase”].value_counts() 
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Table 1 

Number of Data Points per Phase 

Phase Count 

1 

2 

3 

36 

31 

62 

Note. In the original data, the phases were labelled 1, 3 and 4. They have been replaced by 1, 

2 and 3 respectively for readability. 

 

In Table 1, there is a notable preponderance of data points in Phase 3 as shown above. It is 

important to take this into account as in the event that the “phase” has a huge impact on the 

pass/fail rate, Phase 3 will be heavily weighted and the results would tend to be biased towards 

Phase 3. 

 

Figure 2 shows the number of data points per variant in the dataset. Each variant does not have 

a lot of data since the data is split into many variants. Hence trying to train individual models 

on each variant can be ruled out. However, as seen in Table 1, there is enough data for each 

individual phase, which allows model training on each individual “phase” as a possible method 

for consideration. 

 

Figure 2 

Number of Data Points per Variant. 

  
Looking at the number of pass and fail for each variable (variant, mileage, engine hours, phase 

and age) gives us the figures 3-7 (in Appendix). From those figures, it is obvious that the 

strongest correlation exists between phase and the number of passes and fails as per Figure 6. 

In Figure 6, Phase 2 shows a high failure rate as compared to Phase 1 and 3. This relationship 

is to be observed further after preliminary EDA is completed. From Figure 7, it can be observed 

that age matters as well, ignoring the deviation at age 6 which could potentially be explained 

by the smaller dataset.  

 

As such, the EDA portion can be concluded. 

The main findings are: 

(1) Phase 2 is strongly correlated with high failure rates (38.7% failure rate) 

(2) Age is correlated with failure rates 

(3) Variant seemingly influences failure rates, although it is not yet clear 

(4) Mileage and engine hours show seemingly no correlation with failure rates 
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Method Selection 

The aim of the model is to predict whether a breakdown would occur, given the parameters 

mentioned above. Since this is a classification task and due to the relatively smaller dataset size 

of 129 land platforms, the following methods will be evaluated: Decision Tree, Gradient 

Boosting, Random Forest and K-Nearest Neighbours. The model will be first tested on the 

dataset in its entirety excluding the “variant” variable since there are not many data points per 

variant. 

 

Explanation of models 

Decision Tree is a supervised hierarchical model used in decision support that depicts decisions 

and their potential outcomes using a tree-like model. It classifies complex objects by 

recursively breaking them down into smaller groups based on their features, quantifying the 

values of outcomes and the probabilities of achieving them. The first Classification and 

Regression Tree (CART) was developed by Breiman et al. (1984). 

 

Boosting is an ensemble modelling technique that aims to improve predictive accuracy of 

models by combining multiple weaker learners into a strong one. Boosting is based on the 

question posed by Kearns and Valiant (1988, 1989): “Can a set of weak learners create a single 

strong learner?”. The affirmative answer was later provided by Schapire (1990). 

 

Random Forest (or random decision forest) is an ensemble learning method that constructs a 

multitude of decision trees at training time. For this use case (classification), the output of the 

random forest is the class selected by the most trees. This helps correct for decision trees’ habit 

of overfitting to their training set. The first model was created by Tin Kam Ho (1995) and an 

extension of the algorithm was done by Breiman (2001). 

 

k-nearest neighbours algorithm (KNN) is a non-parametric supervised learning method first 

developed by Evelyn Fix and Joseph Hodges in 1951 (a technical report, which was never 

published) which is used for classification. A commentary for the paper was later published 

(B.W. Silverman & M. C. Jones, 1989). For knn classification, the output is a class membership 

which is determined by a plurality vote of its neighbours. k is usually to be determined (usually, 

𝑘 = √𝑛 ) 
 

Training and Assessment of Models 

The Decision Tree, Random Forest and KNN models were implemented using the Sklearn 

package, whereas boosting was done with the XGBoost package. The performance of the 

models were evaluated using accuracy measures from the Sklearn package 

(sklearn.metrics.accuracy_score) and if the performance is good, a Receiver Operating 

Characteristic (ROC) curve will be further used to benchmark the models against each other 

using the area under the graph. F1 scores will also be used to double check the accuracy of the 

models. 

 

Based on our EDA, the models will be run with the following variables: mileage, engine hours 

and phase. For all models, the classifier was used to predict the final result – a pass or fail on 

inspection. For model accuracy, the model with the highest accuracy (obtained from training) 

was selected. Whereas for precision, it analysed the reliability in reproducing the same 

accuracy with 1000 iterations of the model with the same parameters. This will be expressed 

as a “reproducibility” percentage in the results. 
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Preliminary observations suggest that anything below 82.9% accuracy is equivalent to 

ineffective as it means that the model can only achieve the baseline for the pass/fail probability 

through assuming that all land platforms pass. Ideally, the optimal model is one  that can predict 

pass or fail both accurately and precisely. 

 

PERFORMANCE EVALUATION OF MODELS 
 

As part of the performance evaluation, there will be two main indicators: accuracy and 

reproducibility. The datasets are split into training (70%) and testing (30%) to mitigate 

overfitting since the small dataset is at a higher risk of overfitting occurring during the training 

phase. 

Dataset as a Whole 

When age is included as a feature inputted into the models, all four models showed significantly 

lower accuracy rates. As such, the finalised models do not consider age and only have the 

following features: “mileage”, “engine hours” and “phase”. 

 

Table 2 

Models Effectiveness Ranked Treating Dataset as a Whole 

Rank Model Accuracy (%) Reproducibility (%) 

1 

2 

3 

4 

K-Nearest Neighbours 

Boosting 

Random Forest 

Decision Tree 

97.44 

92.31 

94.87 

92.31 

100.00 

100.00 

79.50 

14.80 

 

From Table 2 (no adjustment of hyperparameters), it can be concluded that knn is the most 

reliable model for the whole dataset. The same accuracy (97.44%) can be obtained on xgb 

while retaining the reproducibility if the scale_pos_weight parameter is modified (to 15000). 

 

From the feature importance graphs (Figure 8 – 10), it can be observed that the different models 

have different feature importance yet all can reach >90% accuracy. This tells us that all features 

are important in determining whether a failure of the land system will occur. Initially in the 

EDA stage, there was no visible correlation for “mileage” and “engine hour”, yet it is visible 

here that there is some pattern, albeit not visible to the human eye.  
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Figure 8 
Feature Importance for XGBoost 

 
Note. From left to right: phase, mileage, enginehr 

 

Figure 9 

Feature Importance for Random Forest 

 
Note. From left to right: mileage, enginehr, phase 

 

Figure 10 

Feature Importance for Decision Tree 

 
Note. From left to right: mileage, enginehr, phase 
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Further Feature Engineering: Dataset as its Parts 

As there was a notable disparity in failure rate between the different phases, as seen from Figure 

6, the dataset was spliced into its different phases to train the machine learning model on each 

one of them separately in an attempt to improve accuracy score. 

 

Table 3 

Most Effective Models for Each Phase 

Phase Model Accuracy (%) Reproducibility (%) 

1 

2 

3 

K-Nearest Neighbours 

Random Forest 

K-Nearest Neighbours 

99.92 

89.75 

99.96 

100.00 

100.00 

100.00 

 

From Table 3, it is observable for Phase 1 and 3, knn is the most effective model whereas for 

Phase 2, random forest is the most effective model. Random forest shows itself to be rather 

effective in Phase 1 and 3 as well, compared to the other models (decision tree and boosting). 

 

Phase 2 is particularly interesting and as such the ROC graph is as follows (Figure 11). 

Random forest indeed does its job (as a model that is designed to counter overfitting) and is 

not overfitted to the training dataset. 

 

Figure 11 

ROC Graph for Phase 2 

 

Results 

Treating the dataset as a whole, a 97.44% accuracy can be obtained, which is extremely 

desirable for the small dataset that was available. Treating it as three separate parts based on 

the phases, a (99.92 × 36 + 89.75 × 31 + 99.96 × 62) ÷ 129 = 97.50% accuracy can be 

obtained with the F1 score being 0.95. Overall, the combination of EDA, Feature Engineering 

and Machine Learning techniques resulted in an additional 17.6% increase in efficiency over 

the baseline of 82.9%. 
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CONCLUSION AND RECOMMENDATIONS 

Real-Life Application 

 

Table 4 

Averaged Confusion Matrix of Model for Dataset as a Whole 

Predicted Actual 

 Pass Fail 

Pass 

Fail 

32.34 

0.00 

0.98 

5.68 

 

The initial method is to send in all Phase 2 vehicles for repair and deal with the additional cost 

of checking 19 vehicles (the passes in phase 2) which are actually not broken down. The model 

is accurate enough and there are no False Passes, which means no vehicles were sent for 

maintenance when they do not actually need it (maintenance cost avoidance). As shown in the 

confusion matrix in Table 4, there is close to 1 False Fail, where it predicted one vehicle would 

pass when it actually would fail. While this error in prediction would incur unexpected 

downtime, this is a relatively low percentage (2.5% - 1 out of 40) and furthermore does not 

incur unnecessary maintenance costs. Trading-off the low False Fail and the ability to identify 

5.68 vehicles (True Fail) as fails when they would have failed, would allow targeted allocation 

of resources to maintain the vehicle, saving maintenance cost and effort while reducing the 

downtime of each vehicle. 

 

In military operations, the percentage availability of vehicles has logistical importance and 

affects operations and training success. As such, with this dataset, the machine learning models 

are able to help raise the average availability of the land system with the increased accuracy of 

17.6%. This can have significant benefits on resource optimisation and military operations. 

Recommendations and Future Work 

With an expanded dataset in the future, especially with more sensors and vehicle health 

utilisation and monitoring systems to collect telemetry data, deep learning models could be 

considered to process the dataset. The best performing methods should still be considered as 

they should still produce >95% accuracy. The fairly robust model generated from the relatively 

small dataset shows promise that this same method can be applied to breakdown and 

maintenance of different land platforms. Possible extensions include extending the use of these 

predictive models to other systems, for example naval and air platforms to also help reduce 

costs in those areas. 
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APPENDIX 

 

Figure 3 

Number of Pass and Fails per Variant 

 
 

Figure 4 

Number of Pass and Fails per Mileage range 

 
Figure 5 
Number of Pass and Fails per Engine Hours range 
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Figure 6 

Number of Pass and Fails per Phase 

 
Figure 7 
Number of Pass and Fails per Age 
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